• Title/Summary/Keyword: magnetic inspection

Search Result 151, Processing Time 0.019 seconds

The Design & Manufacture of Multi-coil Eddy Current Sensor and Characteristic Analysis (다중코일 와전류 센서 설계제작 및 특성분석)

  • Ahn, Y.S.;Gil, D.S.;Park, S.G.
    • Journal of Power System Engineering
    • /
    • v.15 no.3
    • /
    • pp.65-69
    • /
    • 2011
  • This paper introduces the multi-coil eddy current sensor and its characteristic in magnetic material gas turbine rotor. In the past, magnetic particle inspection method was used for qualitative defect evaluation in magnetic material gas turbine rotor. And the ultrasonic inspection method was used for quantitative defect evaluation. Nowadays, eddy current method is used in magnetic gas turbine rotor inspection due to advanced sensor design technology. We developed multi-coil eddy current sensor for the rotor dovetail inspection. At first, rotor stress is analyzed for the determination of sensor position and number. The sensor coils are designed to cover the stress concentration area of rotor dovetail. We select optimum frequency according to material standard penetration data and experiment results. The rotor mock-up and artificial defects were made for the signal detection and resolution analysis of multi-coil eddy current sensor. The results show that signal detection and resolution capabilities are enhanced in comparison to the commercialized sensor enough for the gas turbine rotor inspection. So, this developed multi-coil eddy current sensor substituted for commercialized one and it applied in real gas turbine rotor inspection.

The Study on Eddy Current Characteristic for Surface Defect of Gas Turbine Rotor Material (가스터빈 로터 재질에 따른 표면결함 와전류 특성연구)

  • Ahn, Y.S.;Gil, D.S.;Park, S.G.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.63-67
    • /
    • 2010
  • This paper introduces the eddy current signal characteristic of magnetic and non-magnetic gas turbine rotor. In the past, Magnetic particle inspection method was used in magnetic material for qualitative defect evaluation and the ultrasonic test method was used for quantitative evaluation. Nowadays, eddy current method is used in magnetic gas turbine rotor inspection due to advanced sensor design technology. We are studying on the magnetic gas turbine rotor by using eddy current method. We prepared diverse depth specimens made by magnetic and non-magnetic materials. We select optimum frequency according to material standard penetration data and experiment results. We got the signal on magnetic and non-magnetic material about 0.2 mm, 05 mm, 1.0 mm, 1.5 mm 2.0 mm and 2.5 mm depth defects and compare the signal amplitude and signal trend according to defect depth and frequency. The results show that signal amplitudes of magnetic are bigger than non-magnetic material and the trends are similar on every defect depth and frequency. The detection and resolution capabilities of eddy current are more effective in magnetic material than in non-magnetic materials. So, the eddy current method is effective inspection method on magnetic gas turbine rotor. And it has the merits of time saving and simple procedure by elimination of the ultrasonic inspection in traditional inspection method.

Magnetic Inspection using High-frequency Current Behaviors (고주파 전류의 특성과 자기 센서를 이용한 도체 결함 검사 방법)

  • Im, Han-Sang;Park, Jae-Hong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.95-101
    • /
    • 2000
  • In this paper, an improved method for magnetic inspection to detect surface of a conductor is presented. The presented method is based on the technique of ECP(Electric Current Perturbation), which is to measure the variation of current flow due to defects with a magnetic sensor. The inspection performance is improved by using high frequency current behaviors in order to concentrate the current near the defect and employing the resonant frequency of a search coil as an operating frequency. By analytical results and experiments of the test specimens, the feasibility of the inspection method is shown.

  • PDF

Locating Mechanical Damages Using Magnetic Flux Leakage Inspection in Gas Pipeline System

  • Kim, Jae-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.521-526
    • /
    • 2010
  • Gas transmission pipelines are often inspected and monitored using the magnetic flux leakage method. An inspection vehicle known as a "pig" is launched into the pipeline and conveyed along the pipe by the pressure of natural gas. The pig contains a magnetizer, an array of sensors and a microprocessor-based data acquisition system for logging data. This paper describes magnetic flux leakage (MFL) signal processing used for detecting mechanical damages during an in-line inspection. The overall approach employs noise removal and clustering technique. The proposed method is computationally efficient and can easily be implemented. Results are presented and verified by field tests from an application of the signal processing.

Design Optimization of CRDM Motor Housing

  • Lee, Jae Seon;Lee, Gyu Mahn;Kim, Jong Wook
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.586-592
    • /
    • 2016
  • The magnetic-jack type CRDM withdraws or inserts a control rod assembly from/to the reactor core to control the core reactivity. The CRDM housings form not only the path of the electromagnetic field but also the pressure boundary of a nuclear reactor, and a periodic in-service inspection should be carried out if there are welded or flange jointed parts on the pressure boundary. The in-service inspection is a time-consuming process during the reactor refueling, and moreover it is difficult to perform the inspection over the reactor head. A magnetic motor housing is applied for the current SMART CRDM and has several welding joints, however a nonmagnetic motor housing with fewer or no welding joints may improve the operational efficiency of the nuclear reactor by avoiding or simplifying the in-service inspection process. Prior to the development, the magnetic field transfer efficiency of the nonmagnetic housing was required to be assessed. It was verified and optimized by the electromagnetic analysis of the lifting force estimation. Magnetic flux rings were adopted to improve the efficiency. In this paper, the design and optimization process of a nonmagnetic motor housing with the magnetic flux rings for the SMART CRDM are introduced and the analyses results are discussed.

Development of In-Service Inspection Techniques for PGSFR (PGSFR 가동중검사기술 개발)

  • Kim, Hoe Woong;Joo, Young Sang;Lee, Young Kyu;Park, Sang Jin;Koo, Gyeong Hoi;Kim, Jong Bum;Kim, Sung Kyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.93-100
    • /
    • 2016
  • Since the sodium-cooled fast reactor is operated in a hostile environment due to the use of liquid sodium as its coolant, advanced techniques for in-service inspection are required to periodically verify the integrity of the reactor. This paper presents the development of in-service inspection techniques for Proto-type Generation IV Sodium-cooled Fast Reactor. First, the 10 m long plate-type ultrasonic waveguide sensor has been developed for in-service inspection of reactor internals, and its feasibility was verified through several under-water and under-sodium experiments. Second, the combined inspection system for in-service inspection of ferromagnetic steam generator tubes has been developed. The remote field eddy current testing and magnetic flux leakage testing can be conducted simultaneously by using the developed inspection system, and the detectability was demonstrated through several damage detection experiments. Finally, the electro-magnetic acoustic transducer which can withstand high temperature and be installable in the remote operated vehicle has been developed for in-service inspection of the reactor vessel, and its detectability was investigated through damage detection experiments.

Development of Mobile Robot for CAS inspection of Oil Tanker (유조선의 상태평가계획 검사를 위한 이동로봇의 개발)

  • Lee, Seung-Heui;Son, Chang-Woo;Eum, Yong-Jae;Lee, Min-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.161-167
    • /
    • 2007
  • It is dangerous that an inspector overhauls defects and condition of the inner parts of an oil tanker because of many harmful gases, complex structures, and etc. However, these inspections are necessary to many oil tankers over old years. In this study, we proposed the design of mobile robot for inspection of CAS in oil tanker. The developed CAS inspection mobile robot has four modules, a measurement module of oil tanker's thickness, a corrosion inspection module, a climbing module of the surface on a wall, and a monitoring module. In order to get over at a check position, the driving control algorithm was developed. Magnetic wheels are used to move on the surface of a wall. This study constructed a communication network and the monitoring program to operate the developed mobile robot from remote sites. In order to evaluate the inspection ability, the experiments about performance of CAS inspection using the developed mobile robot have been carried out.

  • PDF

A study on appropriate nondestructive inspection methods of gear units for rolling stock (전동차 대치차 기어의 적절한 탐상법에 관한 연구)

  • Lee, Jae-Il;Lee, Min-Yeol;Lee, Won-Hak;Son, Young-Jin
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.571-582
    • /
    • 2010
  • Typically nondestructive inspection methods of the large gear units are applied to penetrate non-destructive inspection. Nondestructive penetrating inspection put into the small openings of the defect to penetration liquid, remove to excess penetration liquid on the surface of the gear units, spread with developing solution and we can find the small defect by coating with penetration liquid. However, this method has so many issues because of penetrate nondestructive tests on the gear assembly. The steep angle of screw is hard to achieved full penetration and has the problem to remove the excess. In contrast, the magnetic nondestructive inspection is easy to detect subsurface defects and subtle defects. According to the inspection results the stress concentrates in gear surface, some internal defects and microscopic flaws exist on the gear units are not found to penetrate the nondestructive inspection, but magnetic nondestructive inspection could have found many defect. Therefore, a reasonable method of nondestructive inspection for the large gear units is suitable to magnetic nondestructive inspection.

  • PDF

Borehole magnetics for the estimation of unknown foundation pile depth (시추공자력계를 이용한 기초파일 근입심도 추정)

  • Jo, Churl-Hyun;Chung, Hyun-Key;Cho, Kwang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.161-167
    • /
    • 1999
  • There is an increasing need for the estimation of foundation piles whose depths are unknown. Especially in repair and reinforcement works or in safety inspection and assessment to the big structures whose foundations are piles, the accurate information about the depth of foundation piles is one of the most important factors. A borehole magnetic tool has been developed and tested to meet this object. The fundamental base is that there usually exist many re-bars inside the foundation structure such as piles, and these re-bars are ferromagnetic materials which cause strong induced magnetic field comparable to the earth magnetic field. It utilizes flux-gate type magnetometer which measures 3-components of the magnetic field. Taking vertical derivatives of vertical component of the measured magnetic field, we can expect the error limit of estimating the depth of the pile end less than 20 cm in favorable condition. The maximum measurable distance is about 3 m to the pile from the borehole. The field data show that borehole magnetics is one of the most accurate, fast, and reliable methods for this object so far, as long as there is no magnetic materials such as deep located steel pipe or power cables close to the foundation piles.

  • PDF

Effects of Residual Magnetization on MEL Non-destructive Inspection of Gas Pipeline (가스관의 자속누설탐사에서 잔류자화의 영향에 관한 연구)

  • Jang, Pyung-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.143-148
    • /
    • 2004
  • Effects of residual flux density M$_{res}$ and number of inspection on the detection voltage and flux density B of the gas pipeline were investigated in MFL inspection, which is widely used for the non-destructive inspection in a gas pipeline. A simulation equipment composed of the magnetizer and iron ring attached on an aluminum disc was constructed instead of a huge gas pipeline facility. With this system. the iron ring could be perfectly demagnetized and signals from the bolt screw stuck on the disc could be clearly detected so that the effects of M$_{res}$S and the inspection number on the detection voltage and B of iron ring were effectively investigated. With increasing the number of inspection, M$_{res}$, B of the iron ring and the detection voltage decreased and then kept at constant values while final M$_{res}$ increased with increasing initial M$_{res}$. If inspection condition were kept unchanged, the detection voltage was proportional to the last M$_{res}$ of the iron ring instead of B. This was probably due to magnetic hysteresis of the iron ring inherited from magnetic domain so that consideration on the magnetic hysteresis was inevitable in the analysis of MFL signal from defects of a gas pipeline. A new inspection scheme using the magnetizer with reversed magnetization in the subsequent inspection was proposed from the result that a high detection voltage could be obtained in the first inspection of gas pipeline with positive M$_{res}$.