• Title/Summary/Keyword: magnetic force

Search Result 1,708, Processing Time 0.025 seconds

Past and ongoing researches for magnetic force control technology

  • Mori, T.;Nishijima, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.23-27
    • /
    • 2016
  • The technologies using magnetic force control have been investigated toward application in various fields. Some of them have been put into practical use as the results of technological development. This paper introduces our technical development in the field of water processing, scale removal, magnetic drug delivery system, decontamination of radioactive substances and resources recycling.

Magnetic Properties of Anodic Oxidized Films Electrodeposited Cobalt-Iron (코발트-철(鐵)을 전해석출(電解析出)한 양극산화피막(陽極酸化皮膜)의 자기특성(磁氣特性))

  • Kang, Hee-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1143-1146
    • /
    • 1993
  • The magnetic properties of aluminium anodized film in which Co-Fe alloy electrodeposited are investigated with regard to the alloy composition of magnetic films. The electrodeposited Co-Fe particles are confirmed to be single phase Co-Fe alloys by X-ray diffractions. The coercive force as well as the magnetic anisotropy energy can be controlled by changing the composition of the alloy. Magneticfilms having high saturation magnetization and high coercive force were obtained.

  • PDF

Optimal Design of Magnetic Suspension Using Design of Experiment (실험계획법을 이용한 Magnetic suspension의 최적설계)

  • Jung, Jae-Woo;Kim, Sung-Ill;Ha, Seung-Hyoung;Hong, Jung-Pyo;Lee, Ju-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.769-770
    • /
    • 2006
  • This paper proposes the design method of a magnetic suspension that can control external vibration caused by low frequencies on the external vibrations by low frequencies. The magnetic suspension with individual controls is able to compensate the vibrations unlike a mechanical suspension. In the magnetic suspension, two characteristics are required. Firstly, magnetic motive force(MMF) by armature winding must be increased linearly. Secondly, identical magnitude of output force should be produced as direction of MMF. In this paper, axis-symmetric finite element analysis is used for magnetic field analysis. In order to optimize magnetic suspension, response surface methodology combined with experimental design is applied to investigate the characteristics and optimize the magnetic suspension for vibration -free table.

  • PDF

Low-Voltage EM(Elasto-Magnetic) Sensing Technique for Tensile Force Management of PSC(Prestressed Concrete) Internal Tendon (PSC 내부 텐던의 긴장력 관리를 위한 저전압 EM 센싱 기법)

  • Park, Jihwan;Kim, Junkyeong;Eum, Ki-Young;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.87-92
    • /
    • 2019
  • In this paper, we have verified a low-voltage EM(elasto-magnetic) sensing technique for tensile force management of PSC(prestressed concrete) internal tendon in order to apply the technique to actual construction sites where stable power supply is difficult. From observation of past domestic and overseas PSC structural accident cases, it was found that PS tension is very important to maintain structural stability. In this paper, we have tried to measure the tensile force from a magnetic hysteresis curve through EM sensors according to voltage value by using relation between magnetostriction and stress of ferromagnetic material based on elastic-magnetic theory. For this purpose, EM sensor of double cylindrical coil type was fabricated and tensile force test equipment for PS tendon using hydraulic tensioning device was constructed. The experiment was conducted to confirm relationship between changes of permeability and tensile force from the measurement results of the maximum / minimum voltage amount. The change of magnetic hysteresis curve with magnitude of tensile force was also measured by reducing amount of voltage step by step. As a result, the slope of estimation equation in accordance with magnitude of magnetic field decreases with the voltage reduction. But it was confirmed a similar pattern of change of magnetic permeability for the magnetic hysteresis loop. So, in this study, it is considered that it is possible to manage the tensions of PSC internal tendon using EM sensing technique in low-voltage state.

Analysis of Excitation Force and its Application in Vibratory Bowl Feeders (진동형 볼피더의 가진력 해석과 적용)

  • Oh, Seok-Gyu;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.70-77
    • /
    • 2020
  • Vibratory bowl feeders are widely utilized to align and feed the parts stacked inside the bowl of a feeder. The electro-magnetic force of the electromagnet in a bowl feeder generates the excitation force for the bowl to vibrate in both the horizontal and vertical directions to continuously feed the parts on the track. The feed rate of the part depends on the associated displacement in each direction during the vibration. Therefore, the excitation force induced by the electromagnet should be estimated in advance to ensure the suitable design of the bowl feeder. In this study, a theoretical solution was developed to calculate the electro-magnetic force of the electromagnet for a bowl feeder. Using the proposed solution, the electro-magnetic forces corresponding to a variation in the input parameters of the electromagnet, such as the voltage, frequency, and air gap, could be obtained. The force values obtained using the theoretical solution exhibited a satisfactory agreement with the results obtained using the finite element method, thereby demonstrating the validity of the approach. Subsequently, the bowl displacements were analyzed using the motion equation for the bowl feeder when the theoretically obtained excitation force were applied to vibrate the feeder. The correlation between the vertical displacements of the bowl and input parameters of the electromagnet could be obtained.

Improvement of Thrust Force Characteristics by Micro-step Drive of 2 Phase 8 Pole HB type LPM (2상 8극 HB형 LPM의 마이크로스텝 구동에 의한 추력특성 개선)

  • Kim, Sung-Heon;Lee, Eun-Woong;Kim, Il-Jung;Jo, Hyun-Gil;Lee, Dong-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.140-142
    • /
    • 1997
  • After finding the harmonic components by measuring the thrust force, which affects high accuracy position control during micro-step drive of LPM, the exciting current was calculated to remove them. Also the detent force being induced by magnetic flux density of permanent magnetic was measured. It was comfirmed that the tooth and slot width was designed properly thresh the analysis of detent force.

  • PDF

LIBS Analysis on Magnetic Force of Dissimilar Material Using SMAW (이종재료의 피복아크 용접에서 자기력에 따른 LIBS 해석)

  • Lee, Chul Ku;Lee, Wooram
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.54-61
    • /
    • 2013
  • This paper reports mild steel(SPHC) and stainless steel(STS304) sheets commonly used for railroad cars or commercial vehicles such as in the automobile and shipbuilding industries. The sheets are used in these applications, which are mainly fabricated using the shielded metal arc welding(SMAW) of dissimilar materials. It also reports an interesting application of Laser Induced Breakdown Spectroscopy(LIBS) in order to determine the elemental composition diffusion of SPHC and STS304. Arc blow produced by magnetic force during the electric arc welding prevents the formation from a sound weldment. In particular, the mechanical properties of the joint are influenced by not only by geometrical and mechanical factors but also the welding conditions for the arc welded joint. Therefore, the mechanical properties and performance are evaluated by performing a physicochemical component analysis. And they increase in accordance with content of elements and microstructure in mild steel. As results, appropriate range for magnetic fields could be achieved. Therefore, the effect of magnetic force in a butt weld of mild steel plates was investigated by comparing to the measured data.

Characterization of Magnetic Abrasive Finishing Using Sensor Fusion (센서 융합을 이용한 MAF 공정 특성 분석)

  • Kim, Seol-Bim;Ahn, Byoung-Woon;Lee, Seoung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.514-520
    • /
    • 2009
  • In configuring an automated polishing system, a monitoring scheme to estimate the surface roughness is necessary. In this study, a precision polishing process, magnetic abrasive finishing (MAF), along with an in-process monitoring setup was investigated. A magnetic tooling is connected to a CNC machining to polish the surface of stavax(S136) die steel workpieces. During finishing experiments, both AE signals and force signals were sampled and analysed. The finishing results show that MAF has nano scale finishing capability (upto 8nm in surface roughness) and the sensor signals have strong correlations with the parameters such as gap between the tool and workpiece, feed rate and abrasive size. In addition, the signals were utilized as the input parameters of artificial neural networks to predict generated surface roughness. Among the three networks constructed -AE rms input, force input, AE+force input- the ANN with sensor fusion (AE+force) produced most stable results. From above, it has been shown that the proposed sensor fusion scheme is appropriate for the monitoring and prediction of the nano scale precision finishing process.

Analysis of the Transient State of the Squirrel Cage Induction Motor by Means of the Magnetic Equivalent Circuit Method

  • Jeong Jong-Ho;Lee Eun-Woong;Cho Hyun-Kil
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.34-38
    • /
    • 2005
  • The finite element method is very flexible for new shapes and provides flux distribution, magnetomotive force, eddy currents, and torques. However, it requires lengthy computational time in order to achieve desired accuracy. The magnetic equivalent circuit method takes less computation time than the finite element method. Therefore, the finite element method is mainly used to confirm the completed design. The magnetic equivalent circuit method is convenient for complicated analysis of the transient state of the induction motor. The magnetic equivalent circuit method is restricted to only one direction of magnetic flux. In this paper, the construction elements (that is, stator iron, rotor iron, yoke, air gap, etc.) of the squirrel cage induction motor were represented by a flux tube and the air gap magnetomotive force was calculated by the magnetic equivalent circuit method. Starting transient torque and phase current of the squirrel cage induction motor were verified by the theoretical calculation and the experiment.

Dynamic Modeling of an Fine Positioner Using Magnetic Levitation (자기 부상 방식 미세 운동 기구의 동적 모델링)

  • Jeong, Gwang-Seok;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1166-1174
    • /
    • 2000
  • In this paper, we introduce a positioner based on magnetic levitation to eliminate the friction which is the most severe effect to limit high resolution on the micro level. Differently from existing electromagnetic device, the proposed positioner consists of air core solenoid and permanent magnet. Although the combination produces small magnetic force, it is suitable for realizing micro motion repeatedly without the accumulation of error because there is no hysteresis caused by ferromagnetic materials, no eddy current loss, no flux saturation. First, the approximate modeling of stiffness and damping effects between the magnetic elements is made and verified experimentally. Then, we have formulated the dynamic equation of one d.o.f magnetic levitation positioner using linear perturbation method and discussed the necessity of optimization for the chief design parameters to maximize the stability performance.