• Title/Summary/Keyword: magnetic flows

Search Result 112, Processing Time 0.028 seconds

Development of a Lower Limb Magnet System Capable of Polarity Conversion (극성변환이 가능한 하지의지 자석락 시스템 개발)

  • Beom-ki Hong;Seung-Gi Kim;Se-Hoon Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.2
    • /
    • pp.77-85
    • /
    • 2024
  • The suspension device that connects the prosthetic leg and the residual limb allows lower limb amputees to wear prosthetic limbs, and is the most sensitive part when using prosthetic limbs as it is always in contact with the residual limb not only while walking but also in everyday life. In this paper, using the principles of attraction and repulsion of permanent magnets, we developed a magnetic lock suspension device that can fix the amputees and prosthetic legs of lower limb amputees by changing the polarity of the magnet. The operation method of the magnetic lock is that when neodymium magnets are placed on the left and right as NNSS based on a non-magnetic brass core, the magnetic force flows outward beyond the brass core using the adsorption member as a medium to generate bonding force. When rotated 90 degrees, the magnet moves to NSNS. The principle is that as the position moves, the magnetic force flows inward and cancels out.Based on this, we conducted a bonding test using tensile strength and a short-term comparative evaluation of the prosthesis with the shuttle lock suspension system, which was a comparison group, to verify reliability and evaluate satisfaction with the prototype. As a result, the tensile strength exceeding the appropriate bonding strength was confirmed, and the magnetic lock showed higher satisfaction than the shuttle lock. In the future, we plan to conduct long-term ADL clinical trials for commercialization and develop a product that can be distributed to actual amputees.

Plasma Outflows along Post-CME Rays

  • Chae, Jongchul;Cho, Kyuhyoun;Kwon, Ryun-Young;Lim, Eun-Kyung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.67.3-68
    • /
    • 2017
  • Bright rays are often observed after coronal mass ejections (CMEs) erupt. These rays are dynamical structures along which plasmas move outward. We investigated the outflows along the post-CME rays observed by the COR2 on board STEREO Behind on 2013 September 21 and 22. We tracked two CMEs, two ray tips, and seven blobs using the NAVE optical flow technique. As a result, we found that the departure times of blobs and ray tips from the optimally chosen starting height of 0.5 $R{\odot}$ coincided with the occurrence times of the corresponding recurrent small flares within 10 minutes. These small flares took place many hours after the major flares. This result supports a magnetic reconnection origin of the outward flows along the post-CME ray and the importance of magnetic islands for understanding the process of magnetic reconnection. The total energy of magnetic reconnection maintaining the outflows for 40 hr is estimated at 1.4' 1030 erg. Further investigations of plasma outflows along post-CME rays will shed much light on the physical properties of magnetic reconnection occurring in the solar corona.

  • PDF

Effect of Applied Magnetic Fields on Czochralski Single Crystal Growth (Czochralski 단결정 성장특성제어를 위한 자장형태에 관한 연구)

  • 김창녕;김경훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.1
    • /
    • pp.18-30
    • /
    • 1993
  • A numerical analysis has been carried out on the Czochralski flow fields when uniform and nonuniform magnetic fields are applied. Czochralski flow fields are governed by buoyancy forces, thermocapillarity, centrifugal forces, and applied magneic fields. In this analysis, pressure and three components of velocity vectors are obtained, and circumferential electrical currents are calculated. When a uniform magnetic field is applied, all the velocity components are decreased and the circumferential electric currents near the crystal surface are increased as the magnetic field intensity is increased. In the case of a nonuniform field, the flows in a meridional plane are suppressed and the circumferential velocity is increased as the non uniformity is increased. The understanding on the Czochralski flow fields under the influence of magnetic fields can lead to the study on the behavior of the concentration of the solute and impurities.

  • PDF

Influence of the length and width of the slots of contact electrode on axial magnetic field at the mid-gap in 4 segment coil type vacuum interrupter (4 segment 코일타입 전극구조의 진공 인터럽터에서 접점전극의 슬롯의 길이와 폭이 전극사이의 측자계에 미치는 영향)

  • Kim, Byong-Chul;Yoon, Jae-Hun;Park, Seong-Hee;Kang, Seong-Hwa;Lim, Kee-Jo
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.210-211
    • /
    • 2007
  • Once high current flows through the vacuum interrupter, eddy current occurs due to the time-varying axial magnetic field caused by the current(AC) and it causes a decrease in axial magnetic field generated by current flowing through coil electrode. but if there are slots on contact electrode it is possible to increase the amplitude of axial magnetic field by reducing the influence of eddy current. there has been many studies about the number of slot of the contact electrode[1][2][3]. In this paper, in addition to these previous results we deal with the influence of the length and width of the slots on axial magnetic field at the mid-gap plane in 4 segment coil type vacuum interrupter by using 3D finite element method software.

  • PDF

Neutron Irradiation Effect of YBa2Cu3O7-y Superconductor (YBa2Cu3O7-y 초전도 벌크의 중성자 조사 효과)

  • Lee, Sang Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.438-441
    • /
    • 2021
  • The electrical characteristics of single-crystal composite superconductors produced by a melting process were studied by neutron irradiation. In order to improve the current characteristics of the YBa2Cu3O7-y superconductor, it is necessary to form an effective flux pinning center inside the superconductor. In this study, an increase in flux pinning was attempted through neutron irradiation onto YBa2Cu3O7-y superconductors. The neutron irradiation was performed at 30 MeV for 500 sec, The electrical properties of the superconductors were measured in a magnetic field of 5 Tesla at 50 K using a magnetic properties measurement system (MPMS). After neutron irradiation, the critical current density of the YBa2Cu3O7-y superconductor in a 1 Tesla magnetic field was 1×105 A/cm2. Once neutrons were irradiated at 30 MeV and 10 μA for 500 sec, the critical current density was observed to increase significantly. When neutrons are irradiated to a superconductor, micro-defects are created in the superconductor, and they act as flux pinning centers that hold the magnetic field generated when an electric current flows.

Conceptual Design of High-Tc Superconducting Current leads for Superconducting Nuclear Fusion Magnets with respect to various HTS tapes (HTS 선재에 따른 초전도 핵융합 마그넷용 고온초전도 전류도입선의 개념설계)

  • Jang, J.Y.;Chang, K.S.;Kim, Y.J.;Choi, S.J.;Jo, H.C.;Chu, S.Y.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.32-36
    • /
    • 2010
  • Superconducting current leads are indispensible for reducing power loss when subjecting current into superconducting magnets. HTS(High-Tc superconducting) current leads are divided into two types; one is bulk type and the other is tape type. In this paper, conceptual design on the HTS current leads which adopts tape type for nuclear fusion magnets is carried out using magnetic field analysis and thermal analysis. When large current flows through superconducting current leads, strong self magnetic field is generated and applied to the superconducting tapes. This phenomenon leads to the critical current decrease of the superconducting tape. Therefore, we analyzed magnetic field distribution of current leads and found the proper arrangement with respect to the various HTS tapes. In addition to the magnetic field analysis, heat leak through the current leads was also calculated to know which HTS tape is superior than others in thermal aspect. Magnetical field analysis and calculation of heat leak are performed to design 2 kA class HTS current leads.

Magnetic Saturation Effect of the Iron Core in Current Transformers Under Lightning Flow

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.97-102
    • /
    • 2017
  • A current transformer (CT) is a type of sensor that consists of a combination of electric and magnetic circuits, and it measures large ac currents. When a large amount of current flows into the primary winding, the alternating magnetic flux in the iron core induces an electromotive force in the secondary winding. The characteristics of a CT are determined by the iron core design because the iron core is saturated above a certain magnetic flux density. In particular, when a large current, such as a current surge, is input into a CT, the iron core becomes saturated and the induced electromotive force in the secondary winding fluctuates severely. Under these conditions, the CT no longer functions as a sensor. In this study, the characteristics of the secondary winding were investigated using the time-difference finite element method when a current surge was provided as an input. The CT was modeled as a two-dimensional analysis object using constraints, and the saturation characteristics of the iron core were evaluated using the Newton-Rhapson method. The results of the calculation were compared with the experimental data. The results of this study will prove useful in the designs of the iron core and the windings of CTs.

Effect of applied magnetic fields on oxygen transport in magnetic Czochralski growth of silicon (Czochralski 방법에 의한 실리콘 단결정 성장에서 자장에 의한 산소의 전달 현상 제어)

  • Chang Nyung Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.3
    • /
    • pp.210-222
    • /
    • 1994
  • The characteristics of flows, temperatures, and concentrations of oxygen are numerically studies in the Czochralski furnace with a uniform axial magnetic field. Important governing factors to the flow fields include buoyancy, thermocapillarity, centrifugal force, magnetic force, diffusion and segregation coefficients of the oxygen, evaporation coefficient in the form of SiO, and ablation rate of crucible wall. With an assumption that the flow fields have reached the steady state, which means that two velocity components in the meridional plane and circumferential velocity, temperatures, electric current intensity become non-transient, then unsteady concentration field of oxygen has been analyzed with an initially uniform oxygen concentration. Oxygen transports due to convection and diffusion in the Czochralski flow field and oxygen flux through the growing crystal surface has been investigated.

  • PDF

Turbulence Driven by Supernova Explosions in a Radiatively-Cooling Magnetized Interstellar Medium

  • KIM JONGSOO;BALSARA DINSHAW;MAC LOW MORDECAI-MARK
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.333-335
    • /
    • 2001
  • We study the properties of supernova (SN) driven interstellar turbulence with a numerical magnetohydrodynamic (MHD) model. Calculations were done using the RIEMANN framework for MHD, which is highly suited for astrophysical flows because it tracks shocks using a Riemann solver and ensures pressure positivity and a divergence-free magnetic field. We start our simulations with a uniform density threaded by a uniform magnetic field. A simplified radiative cooling curve and a constant heating rate are also included. In this radiatively-cooling magnetized medium, we explode SNe one at a time at randomly chosen positions with SN explosion rates equal to and 12 times higher than the Galactic value. The evolution of the system is basically determined by the input energy of SN explosions and the output energy of radiative cooling. We follow the simulations to the point where the total energy of the system, as well as thermal, kinetic, and magnetic energy individually, has reached a quasi-stationary value. From the numerical experiments, we find that: i) both thermal and dynamical processes are important in determining the phases of the interstellar medium, and ii) the power index n of the $B-p^n$ relation is consistent with observed values.

  • PDF

Implementation of High Accurate Level Sensor System using Pulse Wave Type Magnetostriction Sensor (펄스파 자왜 센서를 이용한 고정밀 액위 센서 시스템의 실현에 관한 연구)

  • Choi, Woo-Jin;Lee, John-Tark
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.395-400
    • /
    • 2013
  • In this paper, we introduce the implementation of high accurate level sensor system using the pulse wave type magnetostriction sensor. When a current pulse flows along the waveguide, the magnetic field also propagates towards the end of waveguide. When this magnetic field just passes the position of the magnet for level detection, the resultant magnetic field by these two magnetic fields makes a torsional reflected signal. This is used to calculate the time difference between a interrogation pulse wave and this torsional reflected signal. The key elements and characteristics were investigated to implement level sensor system based on this principle. We introduce a method to calculate the speed of ultrasonic reflected signal and how to make a model of sensing coil. In particular, we experiment with the characteristics of the torsional reflected signal according to the changes of the interrogation voltage and displacement. To make high accurate level sensor system, two methods were compared. One is to use the comparator and time counter, the other is STFT(Short Time FFT) which is capable of the time-frequency analysis.