• Title/Summary/Keyword: magnetic flows

Search Result 112, Processing Time 0.038 seconds

MAGNETIC HELICITY PUMPING BY TWISTED FLUX TUBE EXPANSION

  • CHAE JONGCHUL;MOON Y.-J.;RUST D. M.;WANG HAIMIN;GOODE PHILIP R.
    • 천문학회지
    • /
    • 제36권1호
    • /
    • pp.33-41
    • /
    • 2003
  • Recent observations have shown that coronal magnetic fields in the northern (southern) hemisphere tend to have negative (positive) magnetic helicity. There has been controversy as to whether this hemispheric pattern is of surface or sub-surface origin. A number of studies have focused on clarifying the effect of the surface differential rotation on the change of magnetic helicity in the corona. Meanwhile, recent observational studies reported the existence of transient shear flows in active regions that can feed magnetic helicity to the corona at a much higher rate than the differential rotation does. Here we propose that such transient shear flows may be driven by the torque produced by either the axial or radial expansion of the coronal segment of a twisted flux tube that is rooted deeply below the surface. We have derived a simple relation between the coronal expansion parameter and the amount of helicity transferred via shear flows. To demonstrate our proposition, we have inspected Yohkoh soft X-ray images of NOAA 8668 in which strong shear flows were observed. As a result, we found that the expansion of magnetic fields really took place in the corona while transient shear flows were observed in the photosphere, and the amount of magnetic helicity change due to the transient shear flows is quantitatively consistent with the observed expansion of coronal magnetic fields. The transient shear flows hence may be understood as an observable manifestation of the pumping of magnetic helicity out of the interior portions of the field lines driven by the expansion of coronal parts as was originally proposed by Parker (1974).

On the Association Between Sub-photospheric Flows and Photospheric Magnetic Fields of Solar Active Regions

  • ;채종철
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.86.2-86.2
    • /
    • 2012
  • We present the study of association between sub-photospheric flow and photospheric magnetic fields of active regions respectively derived from the local helioseismology and observed magnetic fields. It is believed that the energetic transients, e.g., flares and CMES, are caused by changes in magnetic and velocity field topologies in solar atmosphere. These changes are essentially brought about by the magnetic fields that are rooted beneath the photosphere where they interact and get affected by sub-photospheric flows. Therefore, we expect the topology of sub-surface flows to be correlated with the observable topology of magnetic fields at the photosphere and higher layers. In order to examine the correlation, if any, we computed the near photospheric flows and photospheric magnetic fields using the Doppler velocity and magnetic fields observations, respectively, provided by the SDO/HMI. The high resolution Doppler observations from the HMI enabled us to compute the very high p-modes parameters which sample the sub-photosphere shallow near the photosphere. Furthermore, we compute the sub-photospheric flow topology parameters, e.g., vorticity, kinetic helicity, and photospheric magnetic field topology parameters, e.g., magnetic helicity, from the magnetic fields observations to compare their associations. We present the result of the analysis in the paper.

  • PDF

Viscosity and Volume Effects on Convective Flows in PGSE-NMR Self-Diffusion Measurements at High Temperature

  • Seo, Ji Hye;Chung, Kee-Choo
    • 한국자기공명학회논문지
    • /
    • 제16권2호
    • /
    • pp.122-132
    • /
    • 2012
  • The effects of the sample viscosity and volume on the convective flows induced by temperature gradient in PGSE-NMR self-diffusion measurements at high temperature have been investigated. The experimental results showed that the viscosity of the liquid sample strongly affects the magnitude of the convective flows as well as the diffusion coefficient itself. It was also found that the convective flows increase as the sample volume increase.

자성나노유체의 기-액 2상유동을 이용한 에너지 하베스팅에 관한 고찰

  • 이원호;김철수;이원섭;이종철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.381.2-381.2
    • /
    • 2016
  • It was known conceptually that ferrofluid or air driven flows induced by waste heat energy could generate electric power in surrounding windings by changing the magnetic flux with time through the colis. In the last decade, a ferrohydrodynamics energy harvesting system based on magnetorheology has been investigated experimentally and numerically. However, it was focused on the movement of air droplets or nanoparticles in the ferrofluid, therefore the electric power generated in the device was not enough to use practically. In this study, we developed the electrical generation concept based on magnetic particle flows for harvesting large amount of electric power and conducted measurements and computations for verifying the concept of electrical generation. In order to obtain a significant amount of electrical energy by using magnetic particle flows, it was critical to control the magnetization direction of magnetic nanoparticles in the fluid by a permanent magnet and to change the magnetic flux with time by air bubbles when the fluid flows in a millimeter-sized channel passed through surrounding windings.

  • PDF

Possible Causes of Paleosecular Variation and Deflection of Geomagnetic Directions Recorded by Lava Flows on the Island of Hawaii

  • Czango Baag
    • IUGG한국위원회:학술대회논문집
    • /
    • IUGG한국위원회 2003년도 정기총회 및 학술발표회
    • /
    • pp.20-20
    • /
    • 2003
  • In the summers of 1997 and 1998 and in February of 2000 we made 570 measurements of the ambient geomagnetic field 120 cm above the pavement surface of State Route 130, south of Pahoa, the island of Hawaii using a three-component fluxgate magnetometer. We measured at every 15.2 m (50 feet) interval covering a distance of 6, 310 m (20, 704 ft) where both historic and pre-historic highly magnetic basalt flows underlie. We also collected 197 core samples from eight road cuts, 489 specimens of which were subject to AF demagnetizations at 5 - 10 mT level up to a maximum field of 60 mT. We observed significant inclination anomalies ranging from a minimum of $31^{\circ}$ to a maximum $40^{\circ}$ where a uniform inclination value of $36.7^{\circ}$ (International Geomagnetic Reference Field, IGRF) was expected. Since the mean of the observed inclinations is approximately $35^{\circ}$ we assume that the study area is slightly affected by the magnetic terrain effect to a systematically shallower inclinations for being located in the regionally sloping surface of the southern side of the island (Baag, et al., 1995). We observed inclination anomalies showing wider (spacial) wavelength (160 - 600 m) and higher amplitudes in the historic lava flows area than in the northern pre-historic flows. Our observations imply that preexisting inclination anomalies such as those that we observed would have been interpreted as paleosecular variation (PSV). These inclination anomalies can best be attributed to concealed underground highly magnetic dikes, channel type lava flows, on-and-off hydrothermal activities through fissure-like openings, etc. Both the within- and between-site dispersions of natural remanent magnetization (NRM) are largest (up to ${\pm}7^{\circ}$) above the flows of 1955, while the area of pre-historic flows in the northern part of the study area exhibit the smallest dispersion. Nevertheless, mean inclinations of each historic flow of 1955 and 1790 are almost identical to that of the corresponding present field, whereas mean of NRM (after AF demagnetization) inclinations for each of the four pre-historic lava flow units is twelve to thirteen degrees lower than the present field inclination. We observed three cases of very large inclination variations from within a single flow, the best fitting curves of which are linear, second and third order polynomials each from within a single flow, whereas no present field variations are observed. This phenomena can be attributed to the notion that local magnetic anomalies on the surface of an active volcano are not permanent, but are transient. Therefore we believe that local magnetic anomalies of an active volcano may be constantly modified due to on going subsurface injections and circulations of hot material and also due to wide spacial and temporal distribution of highly magnetic basaltic flows that will constantly modify the topography which will in turn modify the local ambient geomagnetic field (Baag, et al., 1995). Our observations bring into question the general reliability of PSV data inferred from volcanic rocks, because on-going various geologic and geophysical activities associated with active volcano would continuously deflect and modify the ambient geomagnetic field.

  • PDF

자기공명유속계를 이용한 난류 유동장 가시화 (Validation of Magnetic Resonance Velocimetry by Turbulent Pipe Flow)

  • 이지수;송시몬;조지현
    • 한국가시화정보학회지
    • /
    • 제12권1호
    • /
    • pp.35-42
    • /
    • 2014
  • Magnetic resonance velocimetry (MRV) is a versatile flow visualization technique using magnetic resonance imaging machine developed for the medical purpose. Recently, MRV is often utilized to analyze engineering flows due to its superior features of MRV such as capabilities of measuring flows with complicated, opaque flow geometry unlike optical techniques, 3-dimensional volumetric velocity vectors within a few hours, and etc. The purpose of this study was to validate the MRV data and evaluate the accuracy of the mean velocity profiles that we acquired for a turbulent flow in a circular pipe using a MR machine installed in Korea Basic Science Institute, Ochang, Korea. In addition, we briefly describe a procedure of parameter optimization for the operation of MRV. The results indicate that the MRV measurements provided well resolved mean velocity fields with a quite reasonable accuracy according to the inner and outer layer scaling laws of the turbulent pipe flows.

Rapid Formation and Disappearance of a Filament Barb

  • Joshi, Anand D.
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.86.1-86.1
    • /
    • 2013
  • Observations of a filament showing an activated barb recorded from the at the Dutch Open Telescope (DOT) on 2010 August 20 are presented. The filament developed a barb in 10 minutes, which disappeared within the next 35 minutes. Such a rapid formation and disappearance of a filament barb is unusual, and has been seldom reported. Line-of-sight velocity maps were constructed from images in seven line positions along the H-alpha line. We observe flows in the filament spine towards the barb location prior to its formation, and flows in the barb towards the spine during its disappearance. Photospheric magnetograms from Helioseismic Magnetic Imager on board the Solar Dynamics Observatory were used to determine the changes in magnetic flux in the region surrounding the barb location. The variation of magnetic flux in this duration support the view that barbs are rooted in minor magnetic polarity.

  • PDF

CONSTRAINING THE MAGNETIC FIELD IN THE ACCRETION FLOW OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

  • QIAO, ERLIN
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.457-459
    • /
    • 2015
  • Observations show that the accretion flows in low-luminosity active galactic nuclei (LLAGNs) probably have a two-component structure with an inner hot, optically thin, advection dominated accretion flow (ADAF) and an outer truncated cool, optically thick accretion disk. As shown by Taam et al. (2012), within the framework of the disk evaporation model, the truncation radius as a function of mass accretion rate is strongly affected by including the magnetic field. We define the parameter ${\beta}$ as $p_m=B^2/8{\pi}=(1-{\beta})p_{tot}$, (where $p_{tot}=p_{gas}+p_m$, $p_{gas}$ is gas pressure and $p_m$ is magnetic pressure) to describe the strength of the magnetic field in accretion flows. It is found that an increase of the magnetic field (decreasing the value of ${\beta}$) results in a smaller truncation radius for the accretion disk. We calculate the emergent spectrum of an inner ADAF + an outer truncated accretion disk around a supermassive black hole by considering the effects of the magnetic field on the truncation radius of the accretion disk. By comparing with observations, we found that a weaker magnetic field (corresponding to a bigger value of ${\beta}$) is required to match the observed correlation between $L_{2-10keV}/L_{Edd}$ and the bolometric correction $k_{2-10keV}$, which is consistent with the physics of the accretion flow with a low mass accretion rate around a black hole.

Statistical properties of the fast flows accompanied by dipolarization in the near-Earth tail

  • Kim, Hyun-Sook;Lee, Dae-Young;Ahn, Byung-Ho
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2010년도 한국우주과학회보 제19권1호
    • /
    • pp.40.4-41
    • /
    • 2010
  • Using magnetic field and plasma moment data obtained by THEMIS satellites(A, D, and E), we selected 203 fast flow events accompanied by dipolarization in the near-Earth region( X(GSM) = -7 ~ -12 RE) and statistically examined their properties. It was found that most of the fast flows show the maximum velocity between 1 minute before dipolarization onset and 2 minutes after onset and proceed earthward and duskward. We also found that only the flows with low velocity of less than 400 km/s are observed at X > -8 RE, while the high velocity flows(as well as low velocity flows) are observed at the further tailward region(X < -8 RE). And most of the tailward flows are slow regardless of distance at X(GSM) = -7 ~ -12 RE. On the other hand, if we consider the fast flow as a bubble (Pontius and Wolf, 1990), the entropy parameter, PV5/3 is an important factor to describe the plasma sheet dynamics. Thus we investigated the relationship between the flow velocity and the amount of change in PV5/3 before and after dipolarization onset and found out that the dipolarizations with more depleted entropy parameter tend to show higher flow velocity. Also we examined how the magnetic field at geosynchronous orbit responds to the fast flow accompanied by dipolarization in the near-earth plasma sheet, using the measurements from GOES 11 and 12 statellites. We found that most of the fast flows do not reach geosynchronous orbit as suggested by Ohtani et al. (2006).

  • PDF

유한요소법을 이용한 유도가열 해석 (Analysis of Induction Heating by Using FEM)

  • 윤진오;양영수
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 춘계 학술발표대회 개요집
    • /
    • pp.66-68
    • /
    • 2004
  • Induction heating is a process that is accompanied with magnetic and thermal situation. When the high-frequency current flows in the coil, induced eddy current generates heat to conductor. To simulate an induction heating process, the finite element analysis program was developed. A coupling method between the magnetic and thermal routines was developed. In the process of magnetic analysis and thermal analysis, magnetic material properties and thermal material properties depending on temperature are taken into consideration. In this paper, to predict the angular deformation, temperature difference and the shape of heat affected zone were discussed. Also appropriate coil shape for maximum angular deformation were proposed.

  • PDF