• Title/Summary/Keyword: magnetic field effect

Search Result 1,133, Processing Time 0.03 seconds

RF Heating of Implants in MRI: Electromagnetic Analysis and Solutions

  • Cho, Youngdae;Yoo, Hyoungsuk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.2
    • /
    • pp.67-75
    • /
    • 2020
  • When a patient takes an MRI scan, the patient has a risk of unexpected injuries due to the intensive electromagnetic (EM) field. Among the injuries, the tissue heating by the time-varying EM field is one of the main issues. Since an implanted artificial structure with a conductive material aggravates the heating effect, lots of studies have been conducted to investigate the effect around the implants. In this review article, a mechanism of RF heating around the implants and related studies are comprehensively investigated.

Electrical Properties of a High Tc Superconductor for Renewed Electric Power Energy

  • Lee Sang-Heon
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.371-375
    • /
    • 2006
  • Effects of $Ag_2O$ doping on the electromagnetic properties in the BiSrCaCuO superconductor. The electromagnetic properties of doped and undoped $Ag_2O$ in the BiSrCaCuO superconductor were evaluated to investigate the contribution of the pinning centers. It was confirmed experimentally that a larger amount of magnetic flux was trapped in the $Ag_2O$ doped sample than in the undoped one, indicating that the pinning centers of magnetic flux are related closely to the occurrence of the magnetic effect. We have fabricated superconductor ceramics by the chemical process. A high Tc superconductor with a nominal composition of $Bi_2Sr_2Ca_2Cu_3O_y$ was prepared by the organic metal salts method. Experimental results suggest that the intermediate phase formed before the formation of the superconductor phase may be the most important factor. The relation between electromagnetic properties of Bi HTS and the external applied magnetic field was studied. The electrical resistance of the superconductor was increased by the application of the external magnetic field. But the increase in the electrical resistance continues even after the removal of the magnetic field. The reason is as follows; the magnetic flux due to the external magnetic field penetrates through the superconductor and the penetrated magnetic flux is trapped after the removal of the magnetic flux. During the sintering, doped $Ag_2O$ was converted to Ag particles that were finely dispersed in superconductor samples. It is considered that the area where normal conduction takes place increases by adding $Ag_2O$ and the magnetic flux penetrating through the sample increases. The results suggested that $Ag_2O$ acts to amplify pinning centers of magnetic flux, contributing to the occurrence of the electromagnetic properties.

An analysis on the torque of hysteresis-motor concerned with penetration-effect of magnetic -field and eddy-current (자계 및 와전류 침수효과를 고려한 히스테리시스 전동기의 토오크에 대한 해석법)

  • 정연택
    • 전기의세계
    • /
    • v.29 no.9
    • /
    • pp.594-598
    • /
    • 1980
  • This paper describes an analytical method on the starting torque of hysteresis motor, taking account of penetration effects of magnetic-field and eddy-current into the rotor, to the elliptical approximation method of hysteresis-loop. By the above method, it have obtained the torque of rotor ring with non-magnetic and non-conductive material arbor, and the results are concerned and compared with that of computed by aid of callibration factor, k=1+exp(-2t$_{r}$/.delta.).)

  • PDF

고속회전용 자기베어링 시스템의 Eddy Current 효과에 관한 연구

  • 경진호;노승국;박종권
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.274-277
    • /
    • 1997
  • Eddy current effect in a high speed rotor suspended by a mangnetic bearing is invstigated using electromagnetic field analysis technique. The non-zero conductivity model of a laminated rotor sleeve is proposed to concern electrical shorting of laminates due to rub, handling or press fit assembly,et al. As the rotating speed increase, the distibution of magnetic flux line is changed and the magnetic forces decrease remarkably. ANSYS Magnetics (version 5.3) is used for the magnetic field analysis.

Investigation on the heat transfer of MHD nanofluids in channel containing porous medium using lattice Boltzmann method

  • Xiangyang Liu;Jimin Xu;Tianwang Lai ;Maogang He
    • Advances in nano research
    • /
    • v.15 no.3
    • /
    • pp.191-201
    • /
    • 2023
  • In order to develop better method to enhance and control the flow and heat transfer inside the radiator of electronic device, the synergistic effect of MHD nanofluids and porous medium on the flow and heat transfer in rectangular opened channel is simulated using Lattice Boltzmann method. Three nanofluids of CuO-water, Al2O3-water and Fe3O4-water are studied to analyze the influence of the type of nanofluid on the synergistic effect. The simulation results show that the porous medium can increase the flow velocity in fluid zone adjacent to the porous medium and enhance the heat transfer on the surface of the channel. Under no magnetic field, when the porosity of porous medium is 0.8, the Nusselt number is 4.46% higher than when the porosity is 0.9. Al2O3-water has the best heat transfer effect among the three nanofluids. At Ф=0.06, Ha=100, θ=90°, ε=0.9, Nu of Al2O3-water is 6.51% larger than that of CuO-water and 5.05% larger than that of Fe3O4-water. Magnetic field enhances seepage in porous medium and inhibits heat transfer in the bottom wall. When Ha=30 and 60, the inhibiting effect is the most significant as the magnetic field angle is 90°. And when Ha=100, the inhibiting effect is the most significant as the magnetic field angle is 120°.

A Basic Study of Displacement Measurement of Magnetic Bearing System Using Hall Effect Sensor (자기베어링 시스템에서의 변위측정을 위한 홀 효과 센서의 기초 연구)

  • Yang, J.H.;Jeong, G.G.;Jeong, H.H.;Son, S.K.
    • Journal of Power System Engineering
    • /
    • v.11 no.2
    • /
    • pp.72-76
    • /
    • 2007
  • Since the magnetic bearing system has unstability inherently it is necessary to measure the displacement for stable operation. Normally the displacement measurement is implemented by using sensors. The sensor for the displacement measurement is selected by precision, installation space, effect of magnetic field and response speed. And the cost of displacement measurement sensor also is considered. At the cost the hall effect sensor has a large advantage comparing with the others. Therefore this study concern about the basis experimental test for the displacement measurement of the magnetic bearing system that uses the hall effect sensor coupled with a tiny permanent magnet. The experimental results confirm the validity and practicability for this displacement measurement sensor.

  • PDF

Adaptive tuned dynamic vibration absorbers working with MR elastomers

  • Zhang, X.Z.;Li, W.H.
    • Smart Structures and Systems
    • /
    • v.5 no.5
    • /
    • pp.517-529
    • /
    • 2009
  • This paper presents the development of a new Adaptive Tuned Dynamic Vibration Absorber (ATDVA) working with magnetorheological elastomers (MREs). The MRE materials were fabricated by mixing carbonyl iron particles with silicone rubber and cured under a strong magnetic field. An ATDVA prototype using MRE as an adaptable spring was designed and manufactured. The MRE ATDVA worked in a shear mode and the magnetic field was generated by a magnetic circuit and controlled through a DC power supply. The dynamic performances or the system transmissibility at various magnetic fields of the absorber were measured by using a vibration testing system. Experimental results indicated that this absorber can change its natural frequency from 35Hz to 90Hz, 150% of its basic natural frequency. A real time control logic is proposed to evaluate the control effect. The simulation results indicate that the control effect of MRE ATDVA can be improved significantly.

High-Accuracy Current Sensing Technique Based on Magnetic Sensors for Three-Phase Switchboards (삼상 배전반에서 자기센서 기반의 고정밀 전류 측정 기법)

  • Lee, Sungho;Kim, Taemin;Kim, Namsu;Ahn, Youngho;Lee, Sungchul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.993-998
    • /
    • 2017
  • In this paper, a high-accuracy current sensing technique for three-phase current paths in an electrical switchboard is proposed. Conventional open-style current sensors using magnetic sensors show inaccurate sensing performance with more than 10% error due to undesired magnetic field interference from neighboring paths. To increase accuracy, large and expensive current transformers with large permeabilities have been used, which increased the cost and size. The proposed technique can improve the measured magnetic field by the calculation of magnetic interference effect from neighboring current paths. The relationship between neighboring magnetic fields and the desired magnetic field is theoretically analyzed in a general case. The proposed technique is verified using magnetic field simulations in a three-phase busbar environment.

Dynamic vibration response of functionally graded porous nanoplates in thermal and magnetic fields under moving load

  • Ismail Esen;Mashhour A. Alazwari;Khalid H. Almitani;Mohamed A Eltaher;A. Abdelrahman
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.475-493
    • /
    • 2023
  • In the context of nonclassical nonlocal strain gradient elasticity, this article studies the free and forced responses of functionally graded material (FGM) porous nanoplates exposed to thermal and magnetic fields under a moving load. The developed mathematical model includes shear deformation, size-scale, miscorstructure influences in the framework of higher order shear deformation theory (HSDT) and nonlocal strain gradient theory (NSGT), respectively. To explore the porosity effect, the study considers four different porosity models across the thickness: uniform, symmetrical, asymmetric bottom, and asymmetric top distributions. The system of quations of motion of the FGM porous nanoplate, including the effects of thermal load, Lorentz force, due to the magnetic field and moving load, are derived using the Hamilton's principle, and then solved analytically by employing the Navier method. For the free and forced responses of the nanoplate, the effects of nonlocal elasticity, strain gradient elasticity, temperature rise, magnetic field intensity, porosity volume fraction, and porosity distribution are analyzed. It is found that the forced vibrations of FGM porous nanoplates under thermal and live loads can be damped by applying a directed magnetic field.

Effect of a Static Magnetic Field on Susceptibility to Ethanol-Induced Hepatic Dysfunction in Rats

  • Park, Kap-Joo;Kim, Eun-Jung;Cho, Myung-Hwan;Lee, Jae-Seok
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.833-837
    • /
    • 2006
  • To determine whether alcohol-treated rat liver cells can be protected by a static magnetic field (SMF), we analyzed the blood chemistry and histology of hepatic tissue removed from alcohol-exposed rats that had been exposed to a static magnetic field. The rats were exposed to a 0.3 tesla (3,000 gauss) magnetic field (MF) for 24 hr daily for 5 weeks with appropriate controls. Glutamic pyruvic transaminase activity and the triglyceride levels in animals exposed to the north (N) or south (S) pole of the MF decreased significantly (p<0.01 and p<0.05, respectively) compared with negative control animals with alcohol exposure. A histological examination of hepatic tissue revealed a moderate to severe accumulation of fat vacuoles of various sizes in the cytoplasm of the hepatocytes of animals in the negative control group throughout the study; whereas in groups exposed to the MF poles, fewer fat vacuoles were seen compared with the negative control group. Electron microscopic observations showed that exposure to the N or S pole protected organelles, including the nucleus, from damage during exposure to this toxic agent, as indicated by the fact that the nucleus and the mithochondria virtually retained their shape throughout this study. These results suggest that exposure to a SMF could be an excellent way of protecting against alcohol-induced damage to the rat liver cell.