• 제목/요약/키워드: magnetic equator

검색결과 16건 처리시간 0.023초

Linear Instability and Saturation Characteristics of Magnetosonic Waves along the Magnetic Field Line

  • Min, Kyungguk;Liu, Kaijun
    • Journal of Astronomy and Space Sciences
    • /
    • 제37권2호
    • /
    • pp.85-94
    • /
    • 2020
  • Equatorial noise, also known magnetosonic waves (MSWs), are one of the frequently observed plasma waves in Earth's inner magnetosphere. Observations have shown that wave amplitudes maximize at the magnetic equator with a narrow extent in their latitudinal distribution. It has been understood that waves are generated from an equatorial source region and confined within a few degrees magnetic latitude. The present study investigates whether the MSW instability and saturation amplitudes maximize at the equator, given an energetic proton ring-like distribution derived from an observed wave event, and using linear instability analysis and particle-in-cell simulations with the plasma conditions at different latitudes along the dipole magnetic field line. The results show that waves initially grow fastest (i.e., with the largest growth rate) at high latitude (20°-25°), but consistent with observations, their saturation amplitudes maximize within ±10° latitude. On the other hand, the slope of the saturation amplitudes versus latitude revealed in the present study is not as steep as what the previous statistical observation results suggest. This may be indicative of some other factors not considered in the present analyses at play, such as background magnetic field and plasma inhomogeneities and the propagation effect.

TEMPORAL VARIATIONS OF IO'S MAGNETIC FOOTPRINT BRIGHTNESS

  • WANNAWICHIAN, SUWICHA;PROMFU, TATPHICHA
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.61-64
    • /
    • 2015
  • The brightness of Io's magnetic footprint, an indicator of electromagnetic interaction at the satellite, appears to be strongly connected to the satellite's distance from the plasma equator. As a result, the brightest footprints were detected when Io is near the interception location between the satellite's orbital plane and the plasma equator. However, volcanic activities on Io show strong correlation with the equatorward shift of Jupiter's main auroral oval, consequently causing the disappearance of Io's footprint. The same conclusion was suggested via the observation of Jupiter's hectometric radio emission, called HOM, which closely corresponds to Jupiter's auroral activity. The plasma environment near the Jovian satellites was found to vary significantly at different observational epochs. The electron density increased by approximately a factor of three from the Voyager epoch (1979) to the Galileo epoch (1995), while the electron density was found to be significantly higher (~ 5 times) in the Cassini epoch (2001). In this current study, the magnetic footprints were clearly brighter ten years ago (from peak brightness in 1998-2001) than the footprints detected in 2007. For volcanic activities on Io in 2007, there are two clear activities in February and late May. The magnetic footprint appeared to be dimmer in March 2007, expected to be the result of volcano activities in Feb 2007. However, the magnetic footprint brightness in June appeared to be slightly brighter than the footprints observed in May. The reason could be the time delay between the brightening of the sodium nebula on approximately May 31st and, a while later, the enhancement of flux tube content peaking on approximately June 5th. On the other hand, Io's magnetic footprints were observed during June 1st - 10th when they may not yet have been affected by the increase in mass outflow due to the increase of plasma density.

자기컴퍼스 방위지시부의 제진특성 (Characteristic of Damping Curve for the Directional System of Magnetic Compass)

  • 안영화;정공흔
    • 수산해양기술연구
    • /
    • 제21권1호
    • /
    • pp.28-34
    • /
    • 1985
  • 액체식 자기컴퍼스 방위지시부의 제진특성을 인공자장발생장치내에서 수평자장의 세기에 따라, 컴퍼스종류 및 컴퍼스액의 점성계수별로 측정한 결과는 다음과 같다. 1. 컴퍼스종류별 제진특성은, 실험용 컴퍼스(A, B, C, D, E) 모두 수평자장의 세기가 강할수록 주기는 짧으며, 과행각은 커지는 경향을 나타내었다. 2. 실험용 컴퍼스 모두 지자기의 수평자장이 0.39 gauss인 적도부근에 가까울수록 자기컴퍼스 카아드는 비교적 빨리 안정되고, 평균자장이 아주 약한 극지인 0.03 gauss에서는 주기는 45초 이상으로 길어져 불안정하였다. 3. 컴퍼스종류별 제요소를 ISO의 성능기준과 비교한 결과, A컴퍼스가 그 성능이 가장 양호하여, 자침의 자기능률과 카아드의 직경이 자기컴퍼스 방위 지시부의 제진특성에 큰 영향을 미침을 알 수 있었다. 4. 컴퍼스액의 점성계수별 제진특성은 점성계수가 크고 수평자장이 강할수록 진폭은 커지며, 주기는 짧아지는 경향을 나타내었다. 5. 컴퍼스종류별 제진곡선의 주요점까지의 경과시간(t 하(i))은 수평자장(H)의 -0.71승에, 과행각(P 하(i))은 0.22승에 비례하였으며, 컴퍼스액의 점성계수에 따른 제진곡선의 주요점까지의 경과시간(t 하(i))은 수평자장(H)의 -0.80승에, 과행각(P 하(i))은 0.13~1.08승에 비례하였다.

  • PDF

Global MHD Simulation of a Prolonged Steady Weak Southward Interplanetary Magnetic Field Condition

  • Park, Kyung Sun;Lee, Dae-Young;Kim, Khan-Hyuk
    • Journal of Astronomy and Space Sciences
    • /
    • 제37권2호
    • /
    • pp.77-84
    • /
    • 2020
  • We performed high-resolution three-dimensional global magnetohydrodynamic (MHD) simulations to study the interaction between the Earth's magnetosphere and a prolonged steady southward interplanetary magnetic field (IMF) (Bz = -2nT) and slow solar wind. The simulation results show that dayside magnetic reconnection continuously occurs at the subsolar region where the magnetosheath magnetic field is antiparallel to the geomagnetic field. The plasmoid developed on closed plasma sheet field lines. We found that the vortex was generated at the magnetic equator such as (X, Y) = (7.6, 8.9) RE due to the viscous-like interaction, which was strengthened by dayside reconnection. The magnetic field and plasma properties clearly showed quasiperiodic variations with a period of 8-10 min across the vortex. Additionally, double twin parallel vorticity in the polar region was clearly seen. The peak value of the cross-polar cap potential fluctuated between 17 and 20 kV during the tail reconnection.

Effects of solar variations on standing Alfven waves in the dayside magnetosphere: Polar observations

  • Kim, Khan-Hyuk;Takahashi, Kazue
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.23.4-23.4
    • /
    • 2008
  • In March and April 2001, the apogee (~9 Re) of the Polar spacecraft was located near the subsolar magnetopause with its orbital plane nearly parallel to a magnetic meridian plane. Polar electric and magnetic field data acquired during the two-month interval of solar maximum have been used to study fundamental standing Alfven waves near the subsolar meridian plane (magnetic local time = 1000-1400 hours) at magnetic latitudes from the equator to $\pm45$ degrees and at L values between 7 and 12. In the frequency band from 1.5 to 10 mHz, fundamental mode oscillations were identified based on high coherence (more than 0.7) and an approximately 90-degree phase shift between the azimuthal magnetic and radial electric field components. The L dependence of the fundamental frequencies is studied, and the frequencies are compared with those observed near the solar minimum interval (Takahashi et al. 2001). We found that the average frequencies in solar maximum are lower than those in solar minimum by a factor of ~2. This implies that the mass density in solar maximum is higher than that in solar minimum by a factor of ~4. Since there is a positive correlation between solar irradiance and solar activity, we suggest that the ionosphere in solar maximum produces more ions and load magnetic flux tubes with more ions.

  • PDF

SUNSPOT EVOLUTION IN THE VICINITY OF A LARGE SOLAR FLARE IN AR 6891

  • ALMLEAKY Y. M.;MALAWI A. A.;BASURAH H. M.
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.317-319
    • /
    • 1996
  • Utilizing a Calcium filter, a large two ribbon flare of an importance 2.5Xj31? was recorded at. King Abdul-Aziz University Solar Observatory (KAAUSO) at the 30th of October 1991. This chromosphenc flare observation, which is of special importance since it is rarely reported, was for a flare that occurred near the south west of the equator at the vicinity of a large sunspot group on an active region known as AR 6891. The observed foot points of this flare had a strange behavior in which the separating motion of the ribbons were not typical of most flares, rather were nearly orthogonal. In this article we present the characteristics of the main sunspot group of this active region and try to investigate its evolution and fragmentation with time. Information regarding magnetic fields and velocity fields are necessary to understand the restructuring of the magnetic field pattern and plasma motion, and hence the changes that could lead to the occurrence of such an interesting flare.

  • PDF

Latitudinal Distribution of Sunspot and North-South Asymmetry Revisited

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권2호
    • /
    • pp.55-66
    • /
    • 2018
  • The solar magnetic field plays a central role in the field of solar research, both theoretically and practically. Sunspots are an important observational constraint since they are considered a discernable tracer of emerged magnetic flux tubes, providing the longest running records of solar magnetic activity. In this presentation, we first review the statistical properties of the latitudinal distribution of sunspots and discuss their implications. The phase difference between paired wings of the butterfly diagram has been revealed. Sunspots seem to emerge with the exponential distribution on top of slowly varying trends by periods of ~11 years, which is considered multiplicative rather than additive. We also present a concept for the center-of-latitude (COL) and its use. With this, one may sort out a traditional butterfly diagram and find new features. It is found that the centroid of the COL does not migrate monotonically toward the equator, appearing to form an 'active latitude'. Furthermore, distributions of the COL as a function of latitude depend on solar activity and the solar North-South asymmetry. We believe that these findings serve as crucial diagnostic tools for any potential model of the solar dynamo. Finally, we find that as the Sun modulates the amount of observed galactic cosmic ray influx, the solar North-South asymmetry seems to contribute to the relationship between the solar variability and terrestrial climate change.

MAGNETIC PROPERTIES OF INNER MAGNETOSPHERE DURING GEOMAGNETIC STORMS INFERRED FROM A TSYGANENKO MAGNETIC FIELD MODEL

  • Lee, D.Y.;Kim, K.C.;Choi, C.R.;Kim, H.J.
    • Journal of Astronomy and Space Sciences
    • /
    • 제21권4호
    • /
    • pp.303-314
    • /
    • 2004
  • In this paper we report some properties of inner magnetospheric structure inferred from the T01_s code, one of the latest magnetospheric models by Tsyganenko. We have constructed three average storms representing moderate, strong, and severe intensity storms using 95 actual storms. The three storms are then modelled by the T01_s code to examine differences in magnetic structure among them. We find that the magnetic structure of intense storms is strikingly different from the normal structure. First, when the storm intensity is large, the field lines anchored at dayside longitudinal sectors become warped tailward to align to the solar wind direction. This is particularly so for the field lines anchored at the longitudinal sectors from postnoon through dusk. Also while for the moderate storm the equatorial magnetic field near geosynchronous altitude is found to be weakest near midnight sector, this depression region expands into even late afternoon sector during the severe storm. Accordingly the field line curvature radius at the equator in the premidnight geosynchronous region becomes unusually small, reaching down to a value less than 500 km. We attribute this strong depression and the dawn-dusk asymmetry to the combined effect from the enhanced tail current and the westward expansion/rotation of the partial ring current.

IONOSPHERIC OBSERVATION USING KOREAN SATELLITES

  • MIN KYOUNG W.;LEE JAEJIN;PARK JAEHEUNG;KIM HEEJUN;LEE ENSANG
    • 천문학회지
    • /
    • 제36권spc1호
    • /
    • pp.109-115
    • /
    • 2003
  • We report the results of the ionospheric measurement obtained from the instruments on board the Korea Multi-Purpose Satellite - 1 (KOMPSAT-l). We observed a deep electron density trough in the nighttime equatorial ionosphere during the great magnetic storm on 15 July 2000. We attribute the phenomena to the up-lifted F-layer caused by the enhanced eastward electric field, while the spacecraft passed underneath the layer. We also present the results of our statistical study on the equatorial plasma bubble formation. We confirm the previous results regarding its seasonal and longitudinal dependence. In addition, we obtain new statistical results of the bubble temperature variations. The whole data set of measurement for more than a year is compared with the International Reference Ionosphere (IRI). It is seen that the features of the electron density and temperature along the magnetic equator are more prominent in the KOMPSAT-l observations than in the IRI model.

초기 초신성 잔해의 비열적 전파복사 : 약한 자기장 근사 (NONTHERMAL RADIO EMISSION FROM SNR IN THE PRE-SEDOV STAGE OF EVOLUTION : WEAK MAGNETIC APPROXIMATION)

  • 최승언;정현철
    • 천문학논총
    • /
    • 제10권1호
    • /
    • pp.15-30
    • /
    • 1995
  • It has been recognized that the morphologies of the SNRs from the radio observation are "barrel shaped". To interpret the mechanism of the radiation and the physical state of the environments, we have analytically calculated the dynamical structure of the interacting region in the case where the ejectum has a steep power-law density profile($\rho{\sim}r^{-n}$) and the ambient medium has a shallow power-law density profile($\rho{\sim}r^{-s}$), assuming that the cosmic rays are isotropically accelerated in the shock wave and the magnetic fields are very weak. The calculated synchrotron radio maps show that the emission from the equator is intense and the emissions from the central and polar regions are less intense. Also the thicknesses of the shell are strongly dependent on s and weakly on n. The azimuthal intensity ratio $\alpha$ increases as the efficiency of the cosmic ray acceleration increases and s decreases. We compared the results with the morphology of the SNR A. D. 1006(type I SNR). It does agree with the case of s = 0, w = 0.3 - 0.5. This value for w is consistent with the results by Eichler(1979). It provides us the evidence of the cosmic ray acceleration in the shock wave.

  • PDF