• Title/Summary/Keyword: magnetic doping

Search Result 126, Processing Time 0.026 seconds

Spin-polarization and x-ray magnetic circular dichroism in GaAs

  • Zohar, S.;Ryan, P.J.;Kim, J.W.;Keavney, D.J.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1182-1184
    • /
    • 2018
  • The combination of angular spin momentum with electronics is a promising successor to charge-based electronics. The conduction bands in GaAs may become spin-polarized via optical spin pumping, doping with magnetic ions, or induction of a moment with an external magnetic field. We investigated the spin populations in GaAs with x-ray magnetic circular dichroism for each of these three cases. We find strong anti-symmetric lineshapes at the Ga $L_3$ edge indicating conduction band spin splitting, with differences in line width and amplitude depending on the source of spin polarization.

Synthesis of Fe-Doped TiO2/α-Fe2O3 Core-Shell Nanowires Using Co-Electrospinning and Their Magnetic Property (복합 전기방사법을 이용한 Fe-doped TiO2/α-Fe2O3 이중구조 나노와이어의 합성 및 자성 특성)

  • Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.423-428
    • /
    • 2014
  • We synthesized Fe-doped $TiO_2/{\alpha}-Fe_2O_3$ core-shell nanowires(NWs) by means of a co-electrospinning method and demonstrated their magnetic properties. To investigate the structural, morphological, chemical, and magnetic properties of the samples, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were used, as was a vibrating sample magnetometer. The morphology of the nanostructures obtained after calcination at $500^{\circ}C$ exhibited core/shell NWs consisting of $TiO_2$ in the core region and ${\alpha}-Fe_2O_3$ in the shell region. In addition, the XPS results confirmed the formation of Fe-doped $TiO_2$ by the doping effect of $Fe^{3+}$ ions into the $TiO_2$ lattice, which can affect the ferromagnetic properties in the core region. For comparison, pure ${\alpha}-Fe_2O_3$ NWs were also fabricated using an electrospinning method. With regard to the magnetic properties, the Fe-doped $TiO_2/{\alpha}-Fe_2O_3$ core-shell NWs exhibited improved saturation magnetization(Ms) of approximately ~2.96 emu/g, which is approximately 6.1 times larger than that of pure ${\alpha}-Fe_2O_3$ NWs. The performance enhancement can be explained by three main mechanisms: the doping effect of Fe ions into the $TiO_2$ lattice, the size effect of the $Fe_2O3_$ nanoparticles, and the structural effect of the core-shell nanostructures.

EFFECTS OF Co-DOPING LEVEL ON THE MICROSTRUCTURAL AND FERROMAGNETIC PROPERTIES OF LIQUID-DELIVERY METALORGANIC-CHEMICAL-VAPOR-DEPOSITED $Ti_{1-x}Co_xO_2$ THIN FILMS

  • Seong, N.J.;Seong, S.G.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.42-43
    • /
    • 2002
  • Spintronics is a rapidly expanding research area because of recent developments in the physics of spin-dependent phenomena. For use as spintronic materials, dilute magnetic semiconductors (DMS) are of considerable interest as spin injectors for spintronic devices.$^{[1]}$ Many researchers have studied DMS, in which transition metal atoms are introduced into the lattice, thus inserting local magnetic moments into the lattice. (omitted)

  • PDF

First-Principles Study of Magnetic Interactions between Transition Metal Ions in ZnO (ZnO내 전이 금속 불순물의 자기적 특성에 관한 제일원리 연구)

  • Lee, Eun-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.444-448
    • /
    • 2010
  • Based on first-principles calculations, we study the magnetic properties of Co, Ni, Fe, V, and Mn impurities in ZnO. The stabilities of the ferromagnetic state and the magnetic moment of each impurity largely depend on the amount of doped electron or hole. For lightly doped n-type ZnO, it is found that the doping of Ni ions is the most effective for inducing ferromagnetism, while Fe ions show the most stable ferromagnetic couplings for heavily doped n-type samples. The characteristics of the magnetic interactions of Co ions are similar with those of Fe ions, but Co ions require much larger amount of doped electron than Fe ions to show the ferromagnetic couplings. The ferromagnetic coupling between Mn and V ions is unstable in n-type conditions.

Variation of Electronic and Magnetic: Properties in Oxygen-deficient TiO2-δ Thin Films by Fe Doping (산소 결핍된 TiO2-δ 박막의 철 도핑에 의한 전기적, 자기적 특성 변화)

  • Park, Young-Ran;Kim, Kwang-Joo;Park, Jae-Yun;Ahn, Geun-Young;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.45-50
    • /
    • 2006
  • Oxygen-deficient anatase and rutile titanium dioxide $(TiO_{2-\delta})$ thin films were prepared by a sol-gel method and their structural, electronic, and magnetic properties were investigated. Both anatase and rutile $TiO_{2-\delta}:Fe$ Fe films exhibited ferromagnetism at room temperature for a limited range of Fe doping. For the same amount of Fe doping, the anatase sample exhibited a higher magnetic moment than the rutile one. Result of conversion electron Mossbauer spectroscopy measurements indicates that $Fe^{3+}$ ions substituting the octahedral $Ti^{4+}$ sites mainly contribute to the room-temperature ferromagnetism. Some of the anatase $TiO_{2-\delta}:Fe$ films exhibited p-type character but the observed feromagnetism turns out to be independent of the hole concentration. The room-temperature ferromagnetism can be explained in terms of a direct ferromagnetic coupling between two neighboring $Fe^{3+}$ ions via an electron trapped in oxygen vacancy in $TiO_{2-\delta}:Fe$.

Effect of Alternating Magnetic Field on Ion Activation in Low Temperature Polycrystalline Silicon Technology

  • Hwang, Jin Ha;Lim, Tae Hyung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 2004
  • Statistical design of experiments was successfully employed to investigate the effect of alternating magnetic field on activation of polycrystalline Si (p-Si) doped as n-type using $\textrm{PH}_3$, by full factorial design of three factors with two levels. In this design, the input variables are graphite size, alternating current, and activation time. The output parameter, sheet resistance, is analyzed in terms of the primary effects and multi-factor interactions. Notably, the three-factor interaction is calculated to be a dominant interaction. The interaction between graphite size and activation time and the main effect of current are important effects compared to the other variables and relevant interactions. Alternating magnetic flux activation is proved a significantly beneficial processing technique.

  • PDF