• Title/Summary/Keyword: magnetic core

Search Result 962, Processing Time 0.035 seconds

Iron Core Design of 3-Phase 40MVA HTS Power Transformer Considering Voltages per Turn

  • Lee, Chan-joo;Seok, Bok-yeol
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.54-58
    • /
    • 2004
  • This paper presents the iron core design method of a high temperature superconducting (HTS) transformer considering voltages per turn (V/T). In this research, solenoid type HTS coils were selected for low voltage (LV) winding and double pancake coils for high voltage (HV) winding, just as in conventional large power transformers. V/T is one of the most fundamental elements used in designing transformers, as it decides the core cross sectional area and the number of primary and secondary winding turns. By controlling the V/T, the core dimension and core loss can be changed diversely. The leakage flux is another serious consideration in core design. The magnetic field perpendicular to the HTS wire causes its critical current to fall rapidly as the magnitude of the field increases slowly. Therefore in the design of iron core as well as superconducting windings, contemplation of leakage flux should be preceded. In this paper, the relationship between the V/T and core loss was observed and also, through computational calculations, the leakage magnetic fields perpendicular to the windings were found and their critical current decrement effects were considered in relation to the core design. The % impedance was calculated by way of the numerical method. Finally, various models were suggested.

Core Loss Analysis of Non-oriented Electrical Steel Under Magnetic Induction Including Higher Harmonics

  • Cho, Chuhyun;Son, Derac;Cho, Youk
    • Journal of Magnetics
    • /
    • v.6 no.2
    • /
    • pp.66-69
    • /
    • 2001
  • The actual magnetic induction waveform of cores in electrical machines is not sinusoidal i.e. higher harmonics are always included. Thus the core loss in actual electrical machines is different from the core loss which is measured by the standard method, because the waveform of magnetic induction should be sinusoidal in the standard testing method. Core loss analysis under higher harmonic induction is always important in electric machine design. In this works we measured the core loss when a hysteresis loop has only one period of an ac minor loop of higher harmonic frequency, depending on the position of the ac minor loop of relative to the fundamental harmonic frequency. From this experiment, the core loss P(B/sub 0/f/sub 0/, B/sub h/, nf/sub 0/)) under a higher harmonic magnetic induction B/sub h/ could be expressed by the linear combination the core loss at fundamental harmonic frequency P/sub c/(B/sub 0/, f/sub 0/), the core loss of ac minor loop at zero induction region of the major hysteresis loop P/sub cL/ (B/sub h/, nf/sub 0/), and the core loss of an ac minor loop in the high induction region of the major hysteresis loop P/sub cH/ (B/sub h/, nf/sub 0/) i.e., P/sub c/, (B/sub 0/, f/sub 0/, B/sub h/, nf/sub 0/)=P/sub c/ (B/sub 0/, f/sub 0/,)+(n-1)[k₁(B/sub 0/) P/sub cL/ (B/sub h/, nf/sub 0/)+(1-k₁(B/sub 0/)) P/sub cH/ (B/sub h/, nf/sub 0/)]. This will be useful formula for electrical machine designers and one of effective methods to predict core loss including higher harmonic induction.

  • PDF

Effect of SRA on Hysteresis and Eddy Current Components of Iron Loss in Non-Oriented Steels (무방향성 전기 강판 철손의 자기 이력 손실과 와전류 손실에 미치는 SRA의 영향)

  • 송창열;강이국;신용덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.208-211
    • /
    • 1995
  • This proper focuses on results of relative permeability(${\mu}$$\sub$r/), core loss(W) and magnetic induction [B] measurements on some of the most commonly used core materials(PN-18, 20, 30, 60, Pohang Iron '||'&'||' Steel Co., Ltd.) In case of Stress Relief Annealing(SRA). Results of magnetic induction[B] showed weak variations but core lass reduced strongly after SRA Core loss reduced from 3.071 ∼7.819(W/kg) and 11.377~3.988[W/kg] to 2.88~5.492[W/kg] and 1.213~2.134[W/kg] at 1.5[T] 50 Hz and 1.0 [T] 50Hz respectively after SRA. This SRA process leads to significant changes In magnetic properties and core loss of non-oriented silicon steel sheet.

  • PDF

An Analysis on Core Loss Characteristics for Linear Oscillatory Motor with Permanent Magnet Mover (영구자석 가동자를 갖는 직선형 왕복운동 전동기의 철손 특성 해석)

  • Jang, Seok-Myeong;Kim, Kwan-Ho;Choi, Jang-Young;Cho, Han-Wook;Jeong, Sang-Sub;Seo, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1023-1024
    • /
    • 2011
  • This paper deals with an improved core loss calculation of Linear Oscillatory Motor from curve fitting method using modified Steinmetz equation considered anomalous loss. For an accurate calculation, magnetic field analyses in stator core considering, magnetic field analyses in stator core considering the time harmonics are performed. And using the nonlinear finite element analysis (FEM), we applied separated rotating and alternating magnetic filed to core loss calculation.

  • PDF

Improvement in the Super Low Core-loss Soft Magnetic Materials

  • Maeda, Toru;Sato, Atsushi;Mochida, Yasushi;Toyoda, Haruhisa;Mimura, Koji;Nishioka, Takao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1284-1285
    • /
    • 2006
  • We reported a P/M soft magnetic material with core loss value of $W_{10/1k}=68W/kg$, which is lower than that of 0.35mm-thick laminated material, by using high purity gas-atomized iron powder. Lack of mechanical strength and high cost of powder production are significant issues for industrial use. In order to achieve both low core loss and high strength by using inexpencive powder, the improvement of powder shape and surface morphology and binder strength was conducted. As the result, the material based on water-atomized powder with 80 MPa of TRS and 108 W/kg of core loss (W10/1k) was achieved.

  • PDF

Measurement of Stator Core Loss of an Induction Motor at Each Manufacturing Process

  • Jeong, Kwangyoung;Ren, Ziyan;Yoon, Heesung;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1309-1314
    • /
    • 2014
  • The measurement of stator core loss for an induction motor at each manufacturing process is carried out in this paper. Iron loss in the stator core of induction motor changes after each manufacturing process due to the mechanical stress, which can cause the deterioration of the magnetic performances. This paper proposes a new iron loss measuring system of the stator core in an induction motor, which can be applied to the case when the distribution of magnetic flux density is not uniform along the magnetic flux path. In the system, the iron loss is calculated based on the induced voltage of the B-search coil and exciting current.

3-D Core Loss Calculation in BLDC Motor having Overhang made of SMC Material. (오버행을 가지는 SMC재질을 이용한 BLDC전동기의 3차원 철손 해석)

  • Lee Sang-Ho;Lee Ji-Young;Nam Hyuk;Hong Jung-Pyo;Hur Jin;Sung Ha-Kyung
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1043-1045
    • /
    • 2004
  • This paper deals with the core loss calculation of a BLDC motor made of Soft Magnetic Composite material. Since the teeth of motor partially have overhang in axial direction, 3 - dimensional equivalent magnetic circuit network (3D-EMCN) is used as an analytical method to get flux density of each element. The total core loss is calculated with the magnetic flux density and core loss curves of the SMC material. The calculated result is compared with core loss of the motor without overhang in stator teeth.

  • PDF

Nano-sized Effect on the Magnetic Properties of Ag Clusters

  • Jo, Y.;Jung, M.H.;Kyum, M.C.;Park, K.H.;Kim, Y.N.
    • Journal of Magnetics
    • /
    • v.11 no.4
    • /
    • pp.160-163
    • /
    • 2006
  • We have prepared crystalline Ag nanoparticles with an average size of 4 nm in diameter by using an inductively coupled plasma reactor equipped with the liquid nitrogen cooling system. Our magnetic data show that the nano-sized effect of Ag nanoparticles on the magnetic properties is ferromagnetic, instead of a diamagnetic component of the Ag bulk and a superparamagnetic component of magnetic nanoparticles. We have also studied the magnetic properties of Ag-Cu nanocomposites with an opposite concentration profile between surface and core. These comparisons indicate that the ferromagnetic component strongly depends on the surface of Ag nanoparticles, while the paramagnetic component is strongly affected by the outer oxide layer, with the background of a diamagnetic component from the core of Ag.

A study on the effect of the condition number in the magnetic field mapping of the Air-Core solenoid

  • Huang, Li;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.31-35
    • /
    • 2015
  • Mapping is a useful tool in the magnetic field analysis and design. In some specific research area, such as the nuclear magnetic resonance (NMR) or the magnetic resonance imaging (MRI), it is important to map the magnetic field in the interesting space with high accuracy. In this paper, an indirect mapping method in the center volume of an air-core solenoid is presented, based on the solution of the Laplace's equation for the field. Through the mathematical analysis on the mapping calculation, we know that the condition number of the matrix, generated by the measurement points, can greatly affect the error of mapping result. Two different arrangement methods of the measurement points in field mapping are described in this paper: helical cylindrical line (HCL) method and parallel cylindrical line (PCL) method. According to the condition number, the HCL method is recommended to measure the field components using one probe. As a simple example, we mapped the magnetic fields in a MRI main magnet system. Comparing the results in the different methods, it is feasible and convenient to apply the condition number to reduce the error in the field mapping calculation. Finally, some guidelines were presented for the magnetic field mapping in the center volume of the air-core solenoid.

MEMS-BASED MICRO FLUXGATE SENSOR USING SOLENOID EXCITATION AND PICK-UP COILS (MEMS 공정 제작방법에 의한 솔레노이드형 여자 코일과 검출코일을 사용한 마이크로 플럭스게이트 센서)

  • 나경원;박해석;심동식;최원열;황준식;최상인
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.172-176
    • /
    • 2002
  • This paper describes a MEMS-based micro-fluxgate magnetic sensing element using Ni$\_$0.8/Fe$\_$0.2/ film formed by electroplating. The micro-fluxgate magnetic sensor composed of a thin film magnetic core and micro-structured solenoids for the pick-up and the excitation coils, is developed by using MEMS technologies in order to take advantage of low-cost, small size and lower power consumption in the fabrication. A copper with 20um width and 3um thickness is electroplated on Cr(300${\AA}$)/Au(1500${\AA}$) films for the pick-up(42turn) and the excitation(24turn) coils. In order to improve the sensitivity of the sensing element, we designed the magnetic core into a rectangular-ring shape to reduce the magnetic flux leakage. An electroplated permalloy film with the thickness of 3 $\mu\textrm{m}$ is obtained under 2000Gauss to induce magnetic anisotropy. The magnetic core has the high DC effective permeability of ∼1,100 and coercive field of -0.1Oe. The fabricated sensing element using rectangular-ring shaped magnetic film has the sensitivity of about 150V/T at the excitation frequency of 2MHz and the excitation voltage of 4.4Vp-p. The power consumption is estimated to be 50mW.

  • PDF