• Title/Summary/Keyword: magnetic core

Search Result 963, Processing Time 0.044 seconds

Study on nano-level mirror surface finishing on mold core to glass lens molding (유리렌즈 성형 금형의 나노 경면가공)

  • Kwak, Tae-Soo;Kim, Cyung-Nyun;Lee, Yong-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.97-104
    • /
    • 2006
  • ELID(Electrolytic In-process Dressing) grinding is an excellent technique for mirror grinding of various advanced metallic or nonmetallic materials. A polishing process is also required for elimination of scratches present on ELID grinded surfaces. MAP(Magnetic Assisted Polishing) has been used as polishing method due to its high polishing efficiency and to its resulting in a superior surface quality. This study is describing an effective fabrication method combining ELID and MAP of nano-precision mirror grinding for glass-lens molding mould. It also presents some techniques for achieving the nanometer roughness of the hard metals, such as WC-Co, which are extensively used in precision tooling material.

Physical Properties of Polycrystalline Mn2O3-Substituted LiNiBi Ferrite (Mn2O3가 LiNiBi Ferrite의 물리적 특성에 미치는 영향)

  • Koh Sae Gui
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.655-658
    • /
    • 2004
  • Lithium ferrites are a low-cost material which have been prominent in the high frequency core industry because of their excellent temperature performance and high squareness ratio. In order to develope the lithium ferrites with the high squareness and low coercive force, the ferrites of $Li_{0.48}Bi_{0.02}Ni_{0.04}Fe_{2.46-x}O_4$ were investigated the by varying composition, temperature and frequency. Electric loss of the Li-ferrite was lowered with the substitution of $Mn_{2}O_3$. The addition of $Mn_{2}O_3$ increased the magnetic induction (Bm&Br) but decreased the coercive force (Hc) and the squareness ratio (R=Br/Bm). Also, the Br value was stable at environmental temperature variation.

Expression, Purification and Characterization of the BLM binding region of human Fanconi Anemia Group J Protein

  • Yeom, Kyuho;Park, Chin-Ju
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.1
    • /
    • pp.22-26
    • /
    • 2016
  • FANCJ is a DNA helicase which contributes genome stability by resolving G-quadruplex DNA from 5' to 3' direction. In addition to main ATPase helicase core, FANCJ has the protein binding region at its C-terminal part. BRCA1 and BLM are the binding partner of FANCJ and these protein-protein interactions contribute genomic stability and the proper response to replication stress. As the first attempt for studying FANCJ-BLM interaction, we prepared BLM binding region of FANCJ and characterized with CD and NMR spectroscopy. FANCJ (881-941) with N-ter 6xHis was purified as the oligomer. Secondary structure prediction based on CD data revealed that FANCJ (881-941) composed with ${\beta}$ sheet, turn and coils.$^1H-^{15}N$ HSQC spectra showed nonhomogeneous peak intensities with less number of peaks comparing than the number of amino acids in the construct. It indicated that optimization should be necessary for detailed further structural studies.

Electromagnetic Interference Reflectivity of Nanostructured Manganese Ferrite Reinforced Polypyrrole Composites

  • Chakraborty, Himel;Chabri, Sumit;Bhowmik, Nandagopal
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.295-298
    • /
    • 2013
  • Nano-size manganese ferrite reinforced conductive polypyrrole composites reveal a core-shell structure by in situ polymerization, in the presence of dodecyl benzene sulfonic acid as the surfactant and dopant, and iron chloride as the oxidant. The structure and magnetic properties of manganese ferrite nano-fillers were measured, by using X-ray diffraction and vibrating sample magnetometer. The morphology, microstructure, and conductivity of the composite were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, and four-wire technique. The microwave-absorbing properties of composites reinforcement dispersed in resin coating with the coating thickness of 1.2 nm were investigated, by using vector network analyzers, in the frequency range of 8~12 GHz. A reflection loss of -8 dB was observed at 10.5 GHz.

A Study on Electromagnetic Joining of Aluminum Tubes to Polyurethane Cores (전자기 성형에 의한 알루미늄 합금관과 폴리우레탄봉의 접합연구)

  • Kim, Nam-Hwan;Son, Hui-Sik;Hwang, Un-Seok;Lee, Jong-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.66-74
    • /
    • 1992
  • The joining processes of aluminum alloy tubes and polyurethane cores by electromagnetic impulsive compression are studied. The influences of various geometrical factors (the length of joined part, the thickness of tube, and the clearance between tube and core) and the process factors(the discharged energy and the number of discharge)are examined experimentally and discussed. And the magnetic pressure in metal/polymer joining is calculated and is compared to the pressure in metal/metal joining. The following results are obtained: (1) The joining strength is dependent upon the residual radial strain of the polyurethane cores. (2) The joining strength increases as discharged energy and the number of discharge increase, but decreases as the clearance, thickness and joining length of tube increases. (3) In the case of metal/polymer joining energy loss is increased and the value of magnetic pressure is less than that in the case of metal/metal joining.

  • PDF

Design and Characteristics of Linear Motor Damper for Vibration Control (진동제어용 리니어 모터 탬퍼의 설계 및 특성)

  • Jang, S.M.;Jeong, S.S.;Park, H.D.;Ham, S.Y.;Kim, H.I.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.880-882
    • /
    • 2001
  • A moving-coil-type linear oscillatory actuator is consisted of the NdFeB permanent magnets with high specific energy as the stator, a coil-wrapped nonmagnetic hollow rectangular structure and an iron core as a pathway for magnetic flux. The inductance of moving coil and the push/pull effect is obtained from the permeance model of LOA with the open magnetic circuit. The analytical method are verified using the 2D finite element method.

  • PDF

Effects of Magnetic Characteristics on Coefficient of Thermal Expansion in Fe-Ni-Co-C Invar Alloy for Transmission Line (송전선 강심용 Fe-Ni-Co-C 합금의 열팽창계수에 미치는 자기적 특석의 영향)

  • Kim, Bong-Seo;Kim, Byung-Geol;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1346-1348
    • /
    • 2001
  • Generally, Invar alloy shows very low thermal expansion characteristics, lower than $2{\times}10^{-6}$/K approximately. To apply Fe-Ni-Co-C Invar alloy as a core material for large ampacity transmission line we studied the effects of magnetic properties on coefficient of thermal expansion. The coefficient of thermal expansion(CTE) suddenly decreases with addition of a little carbon(0.08%), increases with the increasing carbon and has a constant value at the composition over than 1.0%C. The trend of Curie temperature change with carbon is similar with that of CTE. Therefore, the CTE has a linear relationship with Curie temperature. However, the CTE linearly decreases with the ratio of saturation magnetization and Curie temperature(${\sigma}_s/T_c$).

  • PDF

Analysis of Iron Loss in a Amorphous Transformer (아몰퍼스 변압기의 철손해석)

  • Im, D.H.;Kwon, B.I.;Yun, S.B.;Park, S.C.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.79-81
    • /
    • 1993
  • In this paper, the iron loss of a amorphous transformer is calculated by the specific iron loss curve, after calculating flux densities in core using magnetic equivalent circuit method and FEM. In iron loss analysis using FEM, lamination model of amorphous transformer is transformed into anisotropy model, and it is known that the result is almost equal compared with the result of analysis using magnetic equivalent circuit method.

  • PDF

The VR based running performance visualization of the magnetic levitation train (가상현실 기반 자기부상열차 주행성능 가시화)

  • Cha, Moo-Hyun;Lee, Han-Min;Han, Hyung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.135-144
    • /
    • 2006
  • To investigate various running performances of the magnetic levitation train systematically, the performance evaluation system based on Modeling & Simulation(M&S) technology is demanded essentially When the VR(virtual reality) techniques are involved, we can not only evaluate the M&S results more effectively and realistically, but also make optimum engineering decision. At the viewpoint of visualization of core engineering data like the train's running performance, there are no many cases of study which provide optimum decision information with the maximized reality and immersion environments through computer user interactions. In this study, the running performance simulation system which provides the VR based 3-dimensional visual information from the M&S results is being developed.

  • PDF

HIGH-ENERGY SOLAR PARTICLE EVENTS IN THREE DIMENSIONS

  • Kocharov, Leon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.45.1-45.1
    • /
    • 2010
  • Using SOHO particle and EUV detection and radio spectrograms from both ground-based and spaceborne instruments, we have studied the first phase of major solar energetic particle (SEP) events associated with wide and fast coronal mass ejections (CMEs) centered at different solar longitudes. Observations support the idea that acceleration of SEPs starts in the helium-rich plasma of the eruption's core well behind the CME leading edge, in association with coronal shocks and magnetic reconnection caused by the CME liftoff; and those "coronal" components dominate during the first ~1.5 hour of the SEP event, not yet being hidden by the CME-bow shock in solar wind. At magnetic connection to the eruption's periphery, onset of SEP emission is delayed for a time of the lateral expansion that is visualized by global coronal (EIT) wave. The first, "coronal" phase of SEP acceleration is followed by a second phase associated with CME-driven shock wave in solar wind, which accelerates high-energy ions from a helium-poor particle population until the interplanetary shock slows down to below 1000 km/s. Based on these and other SOHO observations, we discuss what findings can be expected from STEREO in the SOHO era perspective.

  • PDF