• Title/Summary/Keyword: magnetic core

Search Result 964, Processing Time 0.028 seconds

Strategic Utilization of Soft Magnetic Composite in a High-Speed Switched Reluctance Machine Depending on a Loss Pattern (손실 패턴에 따른 고속 스위치드 릴럭턴스 전동기의 SMC 분말을 이용한 효율 개선)

  • Lee, Cheewoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.323-327
    • /
    • 2017
  • Soft magnetic composite (SMC) material has recently received a significant attention in the area of high-speed machines because of its unique properties such as good design flexibility and low eddy current loss. However, SMC's electromagnetic property is poor compared to silicon steel in terms of saturation, relative permeability, and hysteresis loss. This paper presents a technique for utilization of SMC in two strategic designs of a switched reluctance machine (SRM) depending on a loss pattern. To investigate the effect of SMC's merits and demerits, the stator material is changed from laminated steel to SMC.

Nonlinear Analysis of Hybrid Stepping Motor using 3D Equivalent Magnetic Circuit Network Method (3차원 등가자기회로방법을 이용한 하이브리드 스태핑 모터의 비선형 해석)

  • Jin, C.S.;Kim, S.;Lee, J.;Kim, Y.T.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.131-133
    • /
    • 2001
  • 2D analysis is impossible for Hybrid stepping motor(HSM) and 3D analysis is necessary because the permanent magnet is magnetized to the axial direction. In this paper, the characteristics of HSM are analyzed by using 3D equivalent magnetic circuit network method(3D EMCNM). In addition, the trapezoidal element is introduced for the exact permeance calculation in the complex shape machinery such as HSM. The magnetic saturation of core is considered.

  • PDF

THE EFFECT OF PROCESSING PARAMETTERS ON THE MAGNETIC PROPERTIES OF Mn-Zn FERRITE FOR SMPS

  • Suk, J.H.;Jung, K.K.;Shon, H.J.;Hur, W.D.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.610-613
    • /
    • 1995
  • The effect of processing parameters such as milling, additives and sintering atmoshpere on the magnetic properties of Mn-Zn ferrite was investigated. The experiment was followed by general ceramic fabrication process and added additives were $CaCO_{3}$, $SiO_{2}$, $V_{2}O_{5}$, $ZrO_{2}$, and $Nb_{2}O_{5}$. The effects of additives could be divided into three categories which were formation ofliquid phase, substitution in lattice and inducing stress. Core loss smong the magnetic properties was dependent mainly on the additives and also correlated with processing parameters. As a result, an optimum condition of preparing process for a high quality Mn-Zn ferrite was suggested by controlling the correlation of each processing parameters.

  • PDF

Analytical Investigation on Fundamental Electrical Characteristics of Large Air-gap Superconducting Synchronous Machine

  • Yazdanian, M.;Elhaminia, P.;Zolghadri, M.R.;Fardmanesh, M.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.260-267
    • /
    • 2013
  • In this paper a general 2-D model of a large air-gap synchronous machine either with non-magnetic or magnetic core rotor is investigated and electrical characteristics of the machine are analytically calculated. Considering the general model, analytical equations for magnetic field density in different regions of the large air-gap machine are calculated. In addition, self and mutual inductances in the proposed model of the machine have been developed, which are the most important parameters in the electromagnetic design and transient analysis of synchronous machines. Finite element simulation has also been performed to verify the obtained results from the equations. Analytical results show good agreement with FEM results.

R&D trends of high current REBCO conductor

  • Oh, Sang-Soo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • So far, large-scale scientific devices such as nuclear fusion tokamaks and high energy circular accelerators were constructed using high-current conductors made of metallic superconducting wires. Recently, as REBCO superconducting wires usable in high magnetic fields have been developed by several companies, researchesto apply high current cable type REBCO conductors to next-generation large superconducting magnets were also started. High critical currents of several kA or more in high magnetic fields have been successfully demonstrated on test samples of REBCO cable conductors by several research groups. In this review article, the main features and properties of the representative high current REBCO conductors such as CORC(Conductor On Round Core), TSTC(Twisted Stacked-Tape Cable) and RACC(Roebel-Assembled Coated Conductor), which are currently being developed at abroad are briefly introduced. Research activities of high-current density REBCO MHOS(Multi HTS layers on One Substrate) conductor at KERI, whose structure is different from other cable type REBCO conductors are also shortly introduced.

Filaments and Dense Cores in IC5146: Roles of Gravity, Turbulence, and Magnetic Field

  • Chung, Eun Jung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.42.1-42.1
    • /
    • 2020
  • Filamentary structures pervade the whole kind of molecular clouds from low- to high-mass star-forming clouds, and the non-star-forming clouds. It is supposed to be a prerequisite stage of star formation, and hence how filaments and dense cores form is one of the critical questions in the early star formation study. We investigated the dynamics and chemistry of dense cores in IC5146 using TRAO FUNS (TRAO Survey of the nearby Filamentary molecular clouds, the Universal Nursery of Stars) data. In addition, we performed polarization observation using JCMT Pol-2 polarimetry to investigate the magnetic field morphology within a core-scale. In the presentation, we will present the result of TRAO FUNS and JCMT/Pol2 observation toward the filaments and dense cores in the IC5146. We aim to reveal the roles of gravity, turbulence, and magnetic field in the formation of dense cores in the western hub-filament structure of IC5146.

  • PDF

Structure and Magnetic Properties of Cr2O3/CrO2 Nanoparticles Prepared by Reactive Laser Ablation and Oxidation under High Pressure of Oxygen

  • Si, P.Z.;Wang, X.L.;Xiao, X.F.;Chen, H.J.;Liu, X.Y.;Jiang, L.;Liu, J.J.;Jiao, Z.W.;Ge, H.L.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.211-214
    • /
    • 2015
  • $Cr_2O_3$ nanoparticles were prepared via one-step reactive laser ablation of Cr in oxygen. The metastable $CrO_2$ phase was obtained through the subsequent oxidation of $Cr_2O_3$ nanoparticles under $O_2$ with gas pressures of up to 40 MPa. The as-prepared $Cr_2O_3$ nanoparticles are spherical or rectangular in shape with sizes ranging from 20 nm to 50 nm. High oxygen pressure annealing is effective in producing meta-stable $CrO_2$ from as-dried $Cr_2O_3$ nanoparticles, and the $Cr_2O_3$ nanoparticles exhibit a weak ferromagnetic behavior with an exchange bias of up to 11 mT that can be ascribed to the interfacial exchange coupling between uncompensated surface spins and the antiferromagnetic core. The $Cr_2O_3/CrO_2$ nanoparticles exhibit an enhanced saturation magnetization and a reduced exchange bias with an increasing faction of $CrO_2$ due to the elimination of uncompensated surface spins over the $Cr_2O_3$ nanoparticles when exposed to a high pressure of $O_2$ and/or possible phase segregation that results in a smaller grain size for both $Cr_2O_3$ and $CrO_2$.

A Study on the Fabrication and High Frequency Characteristics of Close type Magnetic Planar Inductor (폐자로형 평면 인덕터의 제조 및 고주파 특성에 관한 연구)

  • 이창호;신동훈;남승의;김형준
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.4
    • /
    • pp.241-248
    • /
    • 1998
  • In accordance with tendency to miniaturization and high frequency operation of electronic products, extensive efforts of miniaturizing magnetic devices such as inductors, transformers and magnetic sensors are being made. In order to study on fabrication and characteristic of micro-magnetic devices, we carried out two sets of experiments. One is to develop a magnetic film that is suitable for high frequency operation, and the other is to develop the fabrication processes for realizing the micro-coil with meander shape. Magnetic films were composed of FeTa(N,C) fabricated by DC magnetron sputtering system. Their microstructures were nanocrystalline structure and magnetic properties showed Bs:13~17 kG, Hc:0.1~0.2 Oe and $\mu$':2000~4000. Cu coil pattern fabricated by selective electroplating process showed good electrical conductivity. In the case of air core inductors, inductance (L) of 50 nH, resonance frequency $(f_R)$ of 700 MHz, and quality factor (Q) of 30 at 200 MHz could be obtained. In the case of close type magnetic inductors, inductance (L) of 150 nH, resonance frequency $(f_R)$ of 100 MHz, and quality factor (Q) of 4 at 10~30 MHz could be obtained.

  • PDF

Efficacy Evaluation of Magnetic P. (자기장을 활용한 통증치료기의 효력평가)

  • Yoon, Yoo-Sik;Kim, Sun-Hyoung;Choi, Sun-Mi;Moon, Jin-Seok;Kang, Dong-Kun;Kim, Young;Ahn, Young-Bok;Lee, Jong-Cheol;Jung, Woo-Jin
    • Korean Journal of Oriental Medicine
    • /
    • v.9 no.2
    • /
    • pp.121-130
    • /
    • 2003
  • The goal of this study is construction and efficacy evaluation of MPC-25 (Magnetic Pain Control-25), a medical device using magnetic stimulation. MPC-25 consists of a main body containing power supply and control module and a bed containing magnetic core and coil. In distinction from electric pain control medical devices, magnetic pain control system is non-contact, so the patients need not take off their clothes to be treated. High amplitude current pulses are applied to a magnetic coil and induce time varying magnetic field generating eddy current in a conductor like human body. Clinical efficacy test was performed in patients suffering from musculoskeletal pain of lumbar, shoulder and joint. Degree of pain before and after treatment for 30 minutes was compared using Visual Analogous Scale. As a result, 14 cases out of 20 showed decreased pain perception, so the rate of efficacy is 70%. Reduction of pain perception was statistically significant (P=0.001 by Wilcoxon Signed Rank Test).

  • PDF

Pulsed Ferrite Magnetic Field Generator for Through-the-earth Communication Systems for Disaster Situation in Mines

  • Bae, Seok;Hong, Yang-Ki;Lee, Jaejin;Park, Jihoon;Jalli, Jeevan;Abo, Gavin S.;Kwon, Hyuck M.;Jayasooriya, Chandana K.K.
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.43-49
    • /
    • 2013
  • A pulsed ferrite magnetic field generator (FMFG) was designed for the use in the 1000 m long through-the-earth (TTE) communication system for mining disaster situations. To miniaturize the TTE system, a ferrite core having 10,000 of permeability was used for the FMFG. Attenuation of the magnetic field intensity from the FMFG (200-turn and 0.18 m diameter) was calculated to be 89.95 dB at 1000 m depth soil having 0.1 S/m of conductivity. This attenuation was lower than 151.13 dB attenuation of 1 kHz electromagnetic wave at the same conditions. Therefore, the magnetic-field was found to be desirable as a signal carrier source for TTE communications as compared to the electromagnetic wave. The designed FMFG generates the magnetic field intensity of $1{\times}10^{-10}$ Tesla at 1000 m depth. This magnetic field is detectable by compact magnetic sensors such as flux gate or magnetic tunneling junction sensor. Therefore, the miniature FMFG TTE communication system can replace the conventional electromagnetic wave carrier type TTE system and allow reliable signal transmission between rescuer and trapped miners.