• Title/Summary/Keyword: magnetic core

Search Result 969, Processing Time 0.031 seconds

Effect of the Perpendicular Magnetic Field and Nonadiabatic Spin-transfer Torque on the Vortex Dynamics

  • Moon, Jung-Hwan;Lee, Kyung-Jin
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.157-159
    • /
    • 2008
  • The effect of the perpendicular field on the trajectory of a vortex core driven by spin-transfer torque was investigated using micromagnetic simulations. The trajectory of the vortex core was staggered due to distortions of the moving vortex core. The core trajectory was affected by both the perpendicular field and ${\beta}$ value, which is the relative magnitude of nonadiabatic spin torque to the adiabatic spin torque. This suggests that the effect of the perpendicular field should be considered when examining a vortex core trajectory affected by ${\beta}$.

Prediction of Core Loss Including Higher Harmonic Inductions Using Two Symmetrical AC Minor Loops

  • Son, Derac
    • Journal of Magnetics
    • /
    • v.8 no.2
    • /
    • pp.93-97
    • /
    • 2003
  • For the induction motor and inverter type motor design, prediction and analysis of core loss including higher harmonics have been studied. In this work, we have generated two symmetrical ac minor loop in the fundamental hysteresis loop whose positions are zero induction region and saturation induction region, and we could pre-dict core loss including higher harmonics inductions. using the following modified superposition principle; $P_c(B_0,f_0,B_h,nf_0)=P_c(B_0,f_0)+(n-1)[K_1(B_0)P_{cL}(B_h,nf_0)+(1-k_1(B_0))P_{cH}(B_h,nf_0)].$Using this equation we could also analyze core losses including higher harmonic induction under different maximum magnetic induction, different amplitude of higher harmonic induction with different harmonic frequencies.

A Study of Characteristic of Electrical-magnetic and Neutron Diffraction of Long-wire High-superconductor for Reducing Energy Losses

  • Jang, Mi-Hye
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.265-272
    • /
    • 2008
  • In this paper, AC losses of long wire Bi-2223 tapes with different twist pitch of superconducting core were fabricated, measured and analyzed. These samples produced by a powder-in-tube method are multi-filamentary tape with Ag matrix. Also, it's produced by non-twist. The critical current measurement was carried out under the environment in Liquid nitrogen and in zero field by 4-prob method. And the Magnetic measurement was carried out under the environment of applied time-varying transport current by transport method. From experiment, the susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation. Neutron-diffraction measurements have been carried out investigate the crystal structure, magnetic structures, and magnetic phase transitions in Bi-2223([Bi, Pb]:Sr:Ca:Cu:O).

Electromagnetic Analysis of a Flat-Type Proportional Solenoid by the Reluctance Method (자기저항기법에 의한 평면형 비례전자석의 전자기 해석)

  • Hong Yeh-Sun;Kwon Yong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.99-106
    • /
    • 2005
  • In this study, the electromagnetic characteristics of a flat-type two-dimensional proportional solenoid were analyzed by the magnetic reluctance method. The equivalent magnetic circuit equation for the solenoid was derived by modeling the reluctance of air gaps and magnetic structural components such as pole core, armature and yoke. It was solved iteratively because of the nonlinear magnetization properties of the iron parts. The solutions showed good agreement with experimental data. Based on the equivalent magnetic circuit equation, the influence of design parameters on the force-to-armature displacement curves was mathematically derived and experimentally verified. In this way, dominant design parameters could be analytically determined.

Analysis of Magnetic Circuit and Static Thrust of a Double-sided Linear Pulse Motor (양측식 선형펄스모터의 자기회로 및 정추력해석)

  • 박한석;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.49-55
    • /
    • 1996
  • In this paper, the characteristics of a double-sided linear pulse motor (DLPM) with permanent magnet are analysed using the method which combined the coenergy method and the equivalent magnetic circuit method. In the process of computation, the magnetic material nonlinealities of the permanent magnet, the primary and the secondary core are interpolated by the cubic spline method. Then, the equivalent magnetic circuit modelled by the permeance method including airgap reluctance, which is a function of displacement, is obtained. The static thrust which is the derivative of coenergy is computed by Newton Raphson method at each dispacement. And, in order to investigate the characteristics of the DLPM, the thrust shows as a function of displacement, input current and air gap. The simulation resuls are compared with experimental ones obtained from the DLPM with 2 phase and 4 poles.

  • PDF

Analysis of the Magnetic Noise for Large Power Induction Motors at Loading Operation (대용량 유도전동기의 부하 운전 시 자기 소음 특성 해석)

  • Hong, Gil-Dong;Chun, Tae-Won;Lee, Hong-Hee;Kim, Heung-Gun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.509-515
    • /
    • 2009
  • When a squirrel cage induction motor is loaded, the magnetic noise can increase depending on the load current. It is due to the variation of air gap harmonic fluxes from the rotor current induced by loading. This unfavorable noise can be anticipated by analysing the radial force waves in the air gap, the mode shapes of them, and stator core natural frequencies at each mode. With the experimental tests with the different rotor slot numbers, the variation of magnetic noise depending on the load current is studied and the method to reduce the magnetic noise is suggested with the newly developed magnetic noise analysis program.

Electro-magneto-elastic analysis of a three-layer curved beam

  • Arefi, Mohammad;Zenkour, Ashraf M.
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.695-703
    • /
    • 2017
  • In this paper, based on first-order shear deformation theory, the governing equations of motion for a sandwich curved beam including an elastic core and two piezo-magnetic face-sheets are presented. The curved beam model is resting on Pasternak's foundation and subjected to applied electric and magnetic potentials on the piezo-magnetic face-sheets and transverse loading. The five equations of motion are analytically solved and the bending and vibration results are obtained. The influence of important parameters of the model such as direct and shear parameters of foundation and applied electric and magnetic potentials are studied on the electro-mechanical responses of the problem. A comparison with literatures was performed to validate our formulation and results.

Analysis and Design of Integrated Magnetic Circuit for Phase Shift Full Bridge Converter (위상천이 풀-브릿지 컨버터를 위한 Integrated Magnetic 회로 설계 및 해석)

  • Jang, Eun-Sung;Li, Xin-Lan;Shin, Yong-Whan;Heo, Tae-Won;Kim, Don-Sik;Lee, Hyo-Bum;Shin, Hwi-Beom
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.406-409
    • /
    • 2008
  • This paper presents the integrated magnetic circuit designing method for phase shift full bridge(PSFB) converter. The integrated magnetic circuit is implemented on redesigned of EI core. The transformer windings are located on center leg and the two inductors are located on the outer legs with air gap. Based on the equivalent circuit model, the principle of operation of the PSFB converter is explained. The operation and performance of the proposed circuit are verified on a 1.2 kW prototype converter. The analysis and design of the integrated magnetic circuit is verified through the experimental and simulation results.

  • PDF

Design and Analysis of a Permanent Magnet Biased Magnetic Levitation Actuator (영구자석 바이어스 자기부상 구동기 설계 및 해석)

  • Na, Uhn Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.875-880
    • /
    • 2016
  • A new hybrid permanent magnet biased magnetic levitation actuator (maglev) is developed. This new maglev actuator is composed of two C-core electromagnetic cores separated with two permanent magnets. Compared to the conventional hybrid maglev actuators, the new actuator has unique flux paths such that bias flux paths are separated with control flux paths. The control flux paths have minimum reluctances only developed by air gaps, so the currents to produce control fluxes can be minimized. The gravity load can be compensated with the permanent magnet bias fluxes developed at off-centered air gap positions while external disturbances are controlled with control fluxes by currents. The consumed power to operate this levitation system can be minimized. 1-D magnetic circuit model is developed for this model such that the flux densities and magnetic forces are extensively analyzed. 3-D finite element model is also developed to analyze the performances of the maglev actuator.

Extrapolating B-H Curve Data using Common Electrical Steel Characteristics for High Magnetic Saturation Applications

  • Chai, Seung-Hee;Kim, Ji-Hyun;Kim, Sung-Il;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.258-264
    • /
    • 2015
  • In this paper, an adequate B-H curve extrapolation method is proposed and its reliability is verified through experiments. A method is developed to estimate the magnetic saturation induction from the density of the lamination core and electrical resistivity. The magnetic saturation induction of electrical steels measured using a vibration sample magnetometer are compared with the analytical results to validate the accuracy of the proposed estimation method. It is found that the predicted error in the magnetic saturation induction of the electrical steels are approximately 1.2% when the proposed method is used. The performance of interior permanent magnet synchronous motors that applies the proposed method are evaluated via 2D nonlinear finite element analysis and through experiments. Based on the obtained results, the extrapolated B-H curves from the estimated saturation induction can be used for various analyses in saturation region.