• Title/Summary/Keyword: magnetic bearing

Search Result 471, Processing Time 0.023 seconds

Analysis of an Electromagnet Biased Diskless Integrated Radial and Axial Magnetic Bearing (전자석 바이어스 Diskless반경방향-축방향 일체형 자기 베어링 해석)

  • Na, Uhn-Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.959-967
    • /
    • 2012
  • The theory for a new electromagnetically biased diskless combined radial and axial magnetic bearing is developed. A typical magnetic bearing system is composed of two radial magnetic bearings and an axial magnetic bearing. The axial magnetic bearing with a large axial disk usually limits rotor dynamic performance and makes assembling and disassembling difficult for maintenance work. This paper proposes a novel electromagnet biased integrated radial-axial magnetic bearing without axial disk. This integrated magnetic bearing uses two axial coils to provide the bias flux to the radial and axial air gaps of the combined bearing. The axial magnetic bearing unit in this combined magnetic bearing utilizes reluctance forces developed in the non-uniform air gaps such that the axial disk can be removed from the bearing unit. The 4-pole homopolar type radial magnetic bearing unit is also designed and analyzed. Three dimensional finite element model for the bearing is also developed and analyzed to illustrate the diskless combined magnetic bearing.

Bending Mode Vibration Control of a Flexible Shaft Supported by a Hybrid Air-foil Magnetic Bearing (공기포일 및 자기 하이브리드 베어링으로 지지되는 연성축의 휨 모드 진동 제어)

  • Jeong, Se-Na;Ahn, Hyung-Joon;Kim, Seung-Jong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.791-791
    • /
    • 2009
  • Hybrid air-foil magnetic bearing combines two oil free bearing technologies to take advantage of the strengths of each bearing with minimizing each other weaknesses. This paper presents bending mode vibration control of a flexible shaft supported by the hybrid air-foil magnetic bearing. An experiment set-up of a flexible shaft supported by the hybrid air-foil magnetic bearing is built. In order to verify the effectiveness of the hybrid bearing, unbalance responses of the flexible shaft supported by three different bearings: air-foil, magnetic and hybrid bearings are compared. Effect of load sharing between air-foil and magnetic bearings are investigated through changing control gain and offset displacements of magnetic bearing.

  • PDF

Analysis of an Electromagnetically Biased Combined Radial and Axial Magnetic Bearing (전자석 바이어스 반경방향-축방향 일체형 자기베어링 해석)

  • Na, Uhn-Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1038-1045
    • /
    • 2010
  • The theory for a new electromagnetically biased combined radial and axial magnetic bearing is developed. This combined magnetic bearing uses two axial coils to provide the bias flux to the radial and axial air gaps of the combined bearing. One dimensional magnetic circuit model for this combined magnetic bearing is developed and analyzed such that flux densities and magnetic forces can be obtained. Three dimensional finite element model for the bearing is also developed and analyzed. Numerical analysis shows that the calculated magnetic forces from 1D model are well matched with those from the finite element model.

External Magnetic Field of Journal Bearing with Twined Solenoid

  • Zhang, Yanjuan;Wang, Jianmei;Li, Decai
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.291-298
    • /
    • 2017
  • In this paper, the distribution of internal magnetic induction intensity of oil-film bearing twined solenoids was proposed. The magnetic field was generated by solenoids and magnetized bearing. The magnetized bearing was simplified as solenoid model. The mathematical model of magnetic induction intensity at any point of finite solenoid was deduced. Through experiment method, the distribution of the internal magnetic induction intensity of oil-film bearing and the magnetizing current formula of bearing was obtained. Further, the magnetic induction intensity distribution of magnetization bearing was solved successfully. The results showed that the magnetic induction was a second-degree parabola with open upwards along the axial plane and the distribution of magnetic induction intensity was opposite to the rule of magnetic induction intensity generated by solenoids. In addition, the magnetic flux density increased linearly with the increase of current.

A Four Pole, Double Plane, Permanent Magnet Biased Homopolar Magnetic Bearing with Fault-Tolerant Capability

  • Na, Uhn-Joo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_1
    • /
    • pp.659-667
    • /
    • 2021
  • This paper develops the theory for a novel fault-tolerant, permanent magnet biased, 4-active-pole, double plane, homopolar magnetic bearing. The Lagrange Multiplier optimization with equality constraints is utilized to calculate the optimal distribution matrices for the failed bearing. If any of the 4 coils fail, the remaining three coil currents change via a novel distribution matrix such that the same opposing pole, C-core type, control fluxes as those of the un-failed bearing are produced. Magnetic flux coupling in the magnetic bearing core and the optimal current distribution helps to produce the same c-core fluxes as those of unfailed bearing even if one coil suddenly fails. Thus the magnetic forces and the load capacity of the bearing remain invariant throughout the failure event. It is shown that the control fluxes to each active pole planes are successfully isolated. A numerical example is provided to illustrate the new theory.

Fault Tolerant Homopolar Magnetic Bearings with Flux Invariant Control

  • Na Uhn-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.643-651
    • /
    • 2006
  • The theory for a novel fault-tolerant 4-active-pole homopolar magnetic bearing is developed. If any one coil of the four coils in the bearing actuator fail, the remaining three coil currents change via an optimal distribution matrix such that the same opposing pole, C-core type, control fluxes as those of the un-failed bearing are produced. The hompolar magnetic bearing thus provides unaltered magnetic forces without any loss of the bearing load capacity even if any one coil suddenly fails. Numerical examples are provided to illustrate the novel fault-tolerant, 4-active pole homopolar magnetic bearings.

A Stability Analysis of the Magnetic Bearing System Subject to Sensor dislocation Error -Discussion on Nonlinear Magnetic Force Model- (센서의 설치 오차에 따른 자기베어링 지지 로터계의 안정도에 관한 연구 -비선형 자기력 모델에 대한 고찰-)

  • 정재일;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.799-805
    • /
    • 1996
  • In many cases, the magnetic farce model is linearized at the origin in designing the controller of a magnetic bearing system. However. this linear assumption is violated by the unmodeled nonlinear effect such as sensor dislocation and backup bearing dislocation. Therefore, a direct probe into the nonlinear magnetic force model in an active magnetic bearing system is necessary. To analyze the nonlinear magnetic force model of a magnetic bearing system, phase plot analysis which is to plot the numerical solution of the nonlinear equation in several initial points in the interested region is applied. Phase plot analysis is used to observe a nonlinear dynamic system qualitatively (not quantitatively). With this method, we can get much useful information of the nonlinear system. Among this information, a bifurcation graph that represents stability and locations of fixed points is essential. From the bifurcation graph, a stability criterion of magnetic bearing system is derived.

  • PDF

Bending Mode Vibration Control of a Flexible Shaft Supported by a Hybrid Air-foil Magnetic Bearing (공기포일 자기 하이브리드 베어링으로 지지되는 연성 축의 휨 모드 진동 제어)

  • Jeong, Se-Na;Ahn, Hyeong-Joon;Kim, Seung-Jong;Lee, Yong-Bok
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.57-64
    • /
    • 2011
  • Hybrid air-foil magnetic bearing integrates two oil free bearing technologies synergetically to adopt the strengths of two bearings with minimizing their weaknesses. This paper presents bending mode vibration control of a flexible shaft supported by the hybrid air-foil magnetic bearing. An experiment set-up of a flexible shaft supported by the hybrid air-foil magnetic bearing is built. In order to verify the effectiveness of the hybrid bearing, unbalance responses of the flexible shaft supported by three different bearings: air-foil, magnetic and hybrid bearings are compared. Effect of load sharing between air-foil and magnetic bearings are investigated through changing the control gain and the rotor center position of magnetic bearing. The experimental results shows that the hybrid bearing can control the bending mode vibration of the flexible shaft effectively and an optimal performance can be achieved with an appropriate load sharing between the air-foil and the magnetic bearings.

A Study on the Vibration Control Using Magnetic Bearings of the Flexible Shaft Supported by Hydrodynamic Bearings (동수압 베어링으로 지지되는 연성축의 자기 베어링을 이용한 진동제어에 관한 연구)

  • 정성천;장인배;한동철
    • Tribology and Lubricants
    • /
    • v.10 no.2
    • /
    • pp.43-50
    • /
    • 1994
  • The hydrodynamic bearing is accepted in many rotating systems because it has a large load carrying capacity. But the anisotropic pressure distribution of the bearing can arise the unstable vibration phenomenon over a certain speed. The magnetic bearing is an active element so that the unstable phenomenon of the hydrodynamic bearing, which is induced by the anisotropic support pressure of the oil film, can be controlled if the control algorithm and the controller gains are chosen appropriately. In this study, we investigate the stabilization method of the hydrodynamic bearing system composing the hybrid bearing which is the single unit of hydrodynamic bearing and magnetic bearing. The load carrying conditions of the hybrid bearing is modelled by the sum of the stiffness and damping coefficients of the hydrodynamic and the magnetic bearings in each direction. The dynamics of the rotor is analyzed by the Finite Element Method and the stability limit is determined by the eigenvalues of the hybrid bearings and shaft system. The eigenvalue study of the system shows that the stability limit of the hybrid bearing is increased compared to that of the hydrodynamic bearing. A Small increment of the stiffness and damping coefficient of the hybrid bearings by the magnetic actuators can increase the stability limit of the system. In this paper we tried to show the design references of the hybrid bearings by using the nondimensional bearing parameters. The analysis results show the possibilities of the stability limit increment of the hydrodynamic bearing system by combining the magnetic bearing.

Optimal design of a Linear Active Magnetic Bearing using Halbach magnet array for Magnetic levitation (자기부상용 Halbach 자석 배열을 이용한 선형 능동자기 베어링의 최적설계)

  • Lee, Hakjun;Ahn, Dahoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.792-800
    • /
    • 2021
  • This paper presents a new structure for a linear active magnetic bearing using a Halbach magnet array. The proposed magnetic bearing consisted of a Halbach magnet array, center magnet, and single coil. The proposed linear active magnetic bearing has a high dynamic force compared to the previous study. The high dynamic force could be obtained by varying the thickness of a horizontally magnetized magnet. The new structure of Halbach linear active magnetic bearing has a high dynamic force. Therefore, the proposed linear active magnetic bearing increased the bandwidth of the system. Magnetic modeling and optimal design of the new structure of the Halbach linear active magnetic bearing were performed. The optimal design was executed on the geometric parameters of the proposed linear active magnetic bearing using Sequential Quadratic Programming. The proposed linear active magnetic bearing had a static force of 45.06 N and a Lorentz force constant of 19.54 N/A, which is higher than previous research.