• Title/Summary/Keyword: magnetic bead (MB)

Search Result 2, Processing Time 0.016 seconds

Development of a Magnetic Bead-Based Method for Specific Detection of Enterococcus faecalis Using C-Terminal Domain of ECP3 Phage Endolysin

  • Yoon-Jung Choi;Shukho Kim;Jungmin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.964-972
    • /
    • 2023
  • Bacteriophage endolysins are peptidoglycan hydrolases composed of cell binding domain (CBD) and an enzymatically active domain. A phage endolysin CBD can be used for detecting bacteria owing to its high specificity and sensitivity toward the bacterial cell wall. We aimed to develop a method for detection of Enterococcus faecalis using an endolysin CBD. The gene encoding the CBD of ECP3 phage endolysin was cloned into the Escherichia coli expression vector pET21a. A recombinant protein with a C-terminal 6-His-tag (CBD) was expressed and purified using a His-trap column. CBD was adsorbed onto epoxy magnetic beads (eMBs). The bacterial species specificity and sensitivity of bacterial binding to CBD-eMB complexes were determined using the bacterial colony counting from the magnetic separations after the binding reaction between bacteria and CBD-eMB complexes. E. faecalis could bind to CBD-eMB complexes, but other bacteria (such as Enterococcus faecium, Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii, Streptococcus mutans, and Porphyromonas gingivalis) could not. E. faecalis cells were fixed onto CBD-eMB complexes within 1 h, and >78% of viable E. faecalis cells were recovered. The E. faecalis recovery ratio was not affected by the other bacterial species. The detection limit of the CBD-eMB complex for E. faecalis was >17 CFU/ml. We developed a simple method for the specific detection of E. faecalis using bacteriophage endolysin CBD and MBs. This is the first study to determine that the C-terminal region of ECP3 phage endolysin is a highly specific binding site for E. faecalis among other bacterial species.

Distribution of Magnetic Field Depending on the Current in the μ-turn Coil to Capture Red Blood Cells (적혈구 포획용 미크론 크기 코일에 흐르는 전류의 크기에 따른 자기장 분포 특성)

  • Lee, Won-Hyung;Chung, Hyun-Jun;Kim, Nu-Ri;Park, Ji-Soo;Lee, Sang-Suk;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.5
    • /
    • pp.162-168
    • /
    • 2015
  • The ${\mu}$-turn coil having a width of ${\mu}m$ on the GMR-SV (giant magnetoresistance-spin valve) device based on the antiferromagnetic IrMn layer was fabricated by using the optical lithography process. In the case of GMR-SV film and GMR-SV device, the magnetoresistance ratios and the magnetic sensitivities are 4.4%, 2.0%/Oe and 1.6 %, 0.1%/Oe, respectively. In the y-z plane the distribution of magnetic field of GMR-SV device and $10{\mu}$-turns coil which put under the several magnetic bead(MB)s with a diameter of $1{\mu}m$ attached to RBC (red blood cell) was analyzed by the computer simulation using the finite element method. When the AC currents of 20 kHz from 0.1 mA to 10.0 mA flow to the 10 turns ${\mu}$-coil, the magnetic field at the position of $z=0{\mu}m$ at the center of coil was calculated from $30.1{\mu}T$ to $3060{\mu}T$ in proportion to the current. The magnetic field at the position of $z=10{\mu}m$ was decreased to one-sixth of that of $z=0{\mu}m$. It was confirmed that the $10{\mu}$-turn coil having enough magnitude of magnetic field for the capture of RBC is possible to use as a biosensor for the detection of magnetic beads attached to RBC.