• Title/Summary/Keyword: magnesium alloys

Search Result 290, Processing Time 0.032 seconds

Rapidly Solidified Powder Metallurgy Mg-Zn-RE Alloys with Long Period Order Structure

  • Kawamura, Yoshihito
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1269-1270
    • /
    • 2006
  • Mg-Zn-RE alloys had a novel lond period stacking ordered (LPO) structure. Their rapidly solidified powder metallurgy (RS P/M) alloys exhibited a combination of high strength and god ductility (tensile yield strength above 550 MPa and elongation above 5%). The LPO Mg-Zn-RE RS P/M alloys had high elevated temperature strength (tensile yield strength above 380 MPa at 473 K) and exhibited a high-strain-rate superplasticity at higher temperatures. In Japan, a national project for developing high strength LPO Mg-Zn-RE RS P/M alloys has started at 2003 for 5 years, which is founded by the Ministry of Economy, Trade and Industry (METI) of Japan. In the national project, project targets in materials performances have been achieved. The developed LPO Mg-Zn-RE RS P/M alloys exhibited higher tensile yield strength, fatigue strength and corrosion resistance than high strength aluminum alloys of extra-super-duralumin (7075-T6).

  • PDF

The Effect of Heat Treatment Hold Time for Mechanical Properties of Zinc-Magnesium Alloy (아연-마그네슘 합금의 열처리에 따른 기계적 특성 연구)

  • Hwang, Injoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.3
    • /
    • pp.117-123
    • /
    • 2020
  • Due to high corrosion resistance, Zinc has been widely used in the automobile, shipping or construction industries as a galvanizing material. Zinc is popular as a coating element, but its low mechanical strength impede the expansion of applications as a load-bearing structure. The mechanical strength of Zinc can be increased through zinc based alloy process, but the ductility is significantly reduced. In this study, the mechanical strength and ductility of Zinc-Magnesium alloys with respect to heat treatment hold time was investigated. In order to enhance the mechanical strength of Zinc, a Zinc-Magnesium alloy was fabricated by a melting process. The heat treatment process was performed to improve the ductility of Zinc-Magnesium alloy. The microstructure of the heat-treated alloy specimen was analyzed using SEM. The hardness and compressive strength of the specimen were measured by a micro-hardness tester and a nano-indenter, respectively.

FE Analysis on the Press Forging of AZ31 Magnesium Alloy (AZ31마그네슘합금의 프레스포징시 FE해석)

  • Hwang, Jong-Kwan;Kang, Dae-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.86-91
    • /
    • 2006
  • Magnesium alloys have been widely used for many structural components of automobiles and aircraft because of high specific strength and good castability in spite of hexgonal closed-packed crystal structure of pure magnesium. In this paper, FE analysis was executed about the formability of AZ3l magnesium alloy on press forging process. For this, the variation of sheet temperature, distribution of punch force and the effect of heat transfer and friction between punch and sheet on the forming characteristics during press forging of AZ31 has been analyzed by finite element analysis. In order to obtain temperature dependence of material characteristics, uniaxial tension tests at elevated temperature were done under temperature of $100^{\circ}C\~ 500^{\circ}C$.

A study on lubrication characteristics in warm deep drawing of magnesium alloy sheet (마그네슘합금의 온간 딥 드로잉 공정에서의 윤활 특성 연구)

  • Park, S.H.;Kim, S.W.;Lee, Y.S.;Kim, B.M.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.306-309
    • /
    • 2007
  • Recently, magnesium alloys have been widely used in automotive, aerospace and electronic industries with the advantages such as lightweightness, high specific strength and stiffness. However, magnesium alloy has quite low formability at room temperature due to its hexagonal close-packed crystal structure. Warm deep drawing is one of the forming technologies to improve the formability of magnesium alloy sheet and the lubrication condition is an important process parameter in that. In this study, the drawing tests of AZ31 alloy sheet at elevated temperature for various kinds of lubricant were carried out and the effects of lubrication conditions on drawbility were investigated.

  • PDF

Formation of Anodic Films on Pure Mg and Mg alloys for Corrosion Protection

  • Moon, Sungmo;Nam, Yunkyung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.16-16
    • /
    • 2012
  • Mg and its alloys have been of great interest because of their low density of 1.7, 30% lighter than Al, but their wide applications have been limited because of their poor resistances against corrosion and/or abrasion. Corrosion resistance of Mg alloys can be improved by formation of anodic films using anodic oxidation method in aqueous electrolytes. Plasma electrolytic oxidation (PEO) is one of anodic oxidation methods by which hard anodic films can be formed as a result of micro-arc generation under high electric field. PEO method utilize not only substrate elements but also chemical components in electrolytes to form anodic films on Mg alloys. PEO films formed on AM50 magnesium alloy in an acidic fluozirconate electrolyte were observed to consist of mainly $ZrO_2$ and $MgF_2$. Liu et al reported that PEO coating on AM30 Mg alloy consists of $MgF_2$-rich outer porous layer and an MgO-rich dense inner layer. PEO films prepared on ACM522 Mg die-casting alloy in an aqueous phosphate solution were also reported to be composed of monoclinic $Mg_3(PO_4)_2$. $CeO_2$-incorporated PEO coatings were also reported to be formed on AZ31 Mg alloys in $CeO_2$ particle-containing $Na_2SiO_3$-based electrolytes. Magnesium tin hydroxide ($MgSn(OH)_6$) was also produced on AZ91D alloy by PEO process in stannate-containing electrolyte. Effects of $OH^-$, $F^-$, $PO{_4}^{3-}$ and $SiO{_3}^{2-}$ ions and alloying elements of Al and Sn on the formation of PEO films on pure Mg and Mg alloys and their protective properties against corrosion have been investigated in this work. $PO{_4}^{3-}$, $F^-$ and $SiO{_3}^{2-}$ ions were observed to contribute to the formation of PEO films but $OH^-$ ions were found to break down the surface films under high electric field. The effect of pulse current on the formation of PEO films will be also reported.

  • PDF

A Study on the Mechanical Properties and Formability of Mg AZ31B Sheet (Mg AZ31B 판재의 기계적 특성과 성형성 분석)

  • Lee, G.H.;Yoon, T.W.;Kang, C.Y.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.495-500
    • /
    • 2014
  • Magnesium alloys are currently expected to be widely used for weight reduction of cars and as high efficient materials in the automotive and electronics industries. Although the specific strength of magnesium is excellent, it cannot be easily formed at room temperature due to its HCP structure. However in order to improve the formability of magnesium, it is necessary to investigate its formability in the warm temperature range. In the current study, the aim was to add to the magnesium property database so that the mass production of a magnesium car body can be accomplished. Warm tensile tests were conducted and the forming limit diagram was determined to confirm formability characteristics of magnesium AZ31B alloy sheet. In addition the bending formability and the magnesium damping capacity were evaluated for AZ31B and compared to SPRC440E which is a sheet steel used for car bodies.

The Brightness Change of Fractured Surface in Accordance with Inclusion Contents of Magnesium Alloy (마그네슘합금내 개재물 함유량에 따른 파단면의 명도변화)

  • Kim, Hyun Sik;Ye, Dea Hee;Kang, Min Cheol;Kim, Jung Dae;Jeong, Hae Yong
    • Journal of Korea Foundry Society
    • /
    • v.34 no.6
    • /
    • pp.200-213
    • /
    • 2014
  • Pure magnesium and magnesium alloys have been applied to various kinds of industrial fields, especially automotive and electronic parts. These parts are manufactured mainly through a diecasting process. These days, magnesium ingots are used as raw material, and recycled ingots are often used for commercial purposes. But the quality of virgin magnesium and recycled ingots is not secure. Therefore, massive casting defects can occur, and some things manufactured can be damaged by these defects. This study evaluated the inclusions of virgin magnesium and recycled ingot. It also included composition analysis by spectrometer, measuring inclusion contents by SEM & EDS, and performing a brightness test on fractured surfaces. The brightness test is generally very easy and obtains results quickly, so its results have been compared with the results obtained from various test methods. From the test results, we obtained a satisfactory result in evaluating inclusion and oxide. The brightness values are lower as the inclusion contents are higher. When the brightness value is over 47 in AM50A and 44 in AZ91D, the mechanical properties are expected to be good.

Mechanical Properties and Corrosion Resistance of Plasma Electrolytic Oxidation Coatings on AZ31 Magnesium Alloy

  • Park, Jae Seon;Jung, Hwa Chul;Shin, Kwang Seon
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • The plasma electrolytic oxidation (PEO) process is a relatively new surface treatment technique that produces a chemically stable and environment-friendly electrolytic coating that can be applied to all types of magnesium alloys. In this study, the characteristics of oxide film were examined after coating the extruded AZ31 alloy through the PEO process. Hard ceramic coatings were obtained on the AZ31 alloy by changing the coating time from 10min to 60min. The morphologies of the surface and the cross-section of the PEO coatings were examined by scanning electron microscopy and optical microscopy, and the thickness of the coating was measured. The X-ray diffraction pattern of the coating shows that the coated layer consists mainly of the MgO and $Mg_2SiO_4$ phases after the oxidation reaction. The hardness of the coated AZ31 alloy increased with increasing coating time. In addition, the corrosion rates of the coated and uncoated AZ31 alloys were examined by salt spray tests according to ASTM B 117 and the results show that the corrosion resistance of the coated AZ31 alloy was superior to that of the un-coated AZ31 alloy.

The Effect of Al and Sn Additions on Corrosion Behavior of Permanent Mold Casting Magnesium Alloy (금형 주조한 마그네슘 합금의 부식 거동에 미치는 Al 및 Sn의 영향)

  • Kim, Byeong Ho;Seo, Jae Hyun;Park, Kyung Chul
    • Journal of Korea Foundry Society
    • /
    • v.35 no.2
    • /
    • pp.36-43
    • /
    • 2015
  • In this study, the influences of aluminum and tin additions (individual and combined) on corrosion behavior of magnesium alloy have been determined. The studied alloys were fabricated by permanent mold casting method to measure the corrosion properties, a potentiodynamic test, hydrogen evolution test and immersion test were carried out in a 3.5% NaCl solution at pH 7.2. From the results of microstructure analysis, the Mg-9Al-1Zn alloy was found to be composed of ${\alpha}$-Mg and rod-like $Mg_{17}Al_{12}$ phase and the Mg-5Sn-5Al-1Zn alloy was found to be composed of ${\alpha}$-Mg, rod-like $Mg_{17}Al_{12}$ and $Mg_2Sn$ phases. In the case of the Mg-9Sn-1Zn alloy, the microstructure was composed of ${\alpha}$-Mg and eutectic $Mg_2Sn$ phase. With Sn addition (individual and combined), the corrosion resistance of the Mg alloys improved.

Anticorrosion Coatings Obtained by Plasma Electrolytic Oxidation on Implant Metals and Alloys

  • Sinebryukhov, S.L.;Gnedenkov, S.V.;Khrisanfova, O.A.;Puz', A.V.;Egorkin, V.S.;Zavidnaya, A.G.
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.91-100
    • /
    • 2018
  • Development of biodegradable implants for treatment of complex bone fractures has recently become one of the priority areas in biomedical materials research. Multifunctional corrosion resistant and bioactive coatings containing hydroxyapatite $Ca_{10}(PO_4)_6(OH)_2$ and magnesium oxide MgO were obtained on Mg-Mn-Ce magnesium alloy by plasma electrolytic oxidation. The phase and elemental composition, morphology, and anticorrosion properties of the coatings were investigated by scanning electron microscopy, energy dispersive spectroscopy, potentiodynamic polarization, and electrochemical impedance spectroscopy. The PEO-layers were post-treated using superdispersed polytetrafluoroethylene powder. The duplex treatment considerably reduced the corrosion rate (>4 orders of magnitude) of the magnesium alloy. The use of composite coatings in inducing bioactivity and controlling the corrosion degradation of resorbable Mg implants are considered promising. We also applied the plasma electrolytic oxidation method for the formation of the composite bioinert coatings on the titanium nickelide surface in order to improve its electrochemical properties and to change the morphological structure. It was shown that formed coatings significantly reduced the quantity of nickel ions released into the organism.