• Title/Summary/Keyword: magmatic evolution

Search Result 33, Processing Time 0.022 seconds

Paleoproterozoic Hot Orogenesis Recorded in the Yeongnam Massif, Korea (영남육괴에 기록된 고원생대 고온조산운동)

  • Lee, Yuyoung;Cho, Moonsup
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.199-214
    • /
    • 2022
  • The Yeongnam Massif is one of representative basement provinces in the Korean Peninsula, which has experienced high-temperature, low-pressure (HTLP) regional metamorphism and partial melting. Here we reviewed recent developments in Paleoproterozoic (1.87-1.84 Ga) hot orogenesis of the Yeongnam Massif, typified by the granulite-facies metamorphism and partial melting recorded in the HTLP rocks. In particular, spatiotemporal linkage between the metamorphic and magmatic activities, including the Sancheong-Hadong anorthositic magma as a heat source, provides a key to understand the widespread HTLP metamorphism and partial melting in the Yeongnam Massif. Crustal anatexis, resulting from the fluid-present melting and muscovite/biotite dehydration melting, has yielded various types of leucosomes and leucogranites. Zircon and monazite petrochronology, using in-situ U(-Th)-Pb data from the secondary ion mass spectrometry, indicates that the HTLP metamorphism and anatexis lasted over a period of ~15 Ma at ca. 1870-1854 Ma. In addition, a fluid influx event at ca. 1840 Ma was locally recognized by the occurrence of incipient charnockite. Taken together, the Yeongnam Massif preserves a prolonged evolutionary record of the HTLP metamorphism, partial melting, and fluid influx diagnostic for a hot orogen. Such an orogen is linked to the Paleoproterozoic orogeny widespread in the North China Craton, and most likely represents the final phase of crustal evolution in the Columbia/Nuna supercontinent.

Petrogenetic Study on the Foliated Granitoids in the Chonju and the Sunchang area (II) - In the Light of Sr and Nd Isotopic Properites - (전주 및 순창지역에 분포하는 엽리상 화강암류의 성인에 대한 연구 (II) - Sr 및 Nd 동위원소적 특성을 중심으로 -)

  • Na, Choon-Ki;Lee, In-Seong;Chung, Jae-Il
    • Economic and Environmental Geology
    • /
    • v.30 no.3
    • /
    • pp.249-262
    • /
    • 1997
  • The Sr and Nd isotopic compositions of two foliated granitic plutons located in the Chonju and Sunchang area were determined in order to reconfirm the intrusion ages of granitoids and to study the sources of granitic magmas. The best defined Rb-Sr isochron for the whole rock samples of the Chonju foliated granite (CFGR) give an age of $284{\pm}12Ma$, suggesting early Permian intrusion age. In contrast, the whole rock Rb-Sr data of the Sunchang foliated granite (SFGR) scatter widely on the isochron diagram with very little variation in the $^{87}Rb/^{86}Sr$ ratios and, therefore, yield no reliable age information. Futhermore they show the concordance of mineral and whole rock Rb-Sr isochron and divide into two linear groups with roughly the same slopes and significantly different $^{87}Sr/^{86}Sr$ ratios, indicating some kind of Rb-Sr distortion in whole rock scale and a difference in source material and/or magmatic evolution between two subsets. The reconstructed isochrons of 243 Ma, which was defined from the proposed data by the omission of one sample point with significantly higher $^{87}Rb/^{86}Sr$ ratio than the others, and 252 Ma, from the combined data of it and some of this study, strongly suggest the possibility that the SFGR was intruded appreciably earlier than had previously been proposed, although the reliability of these ages still questionable owing to high scatter of data points and, therefore, further study is necessary. All mineral isochrons for the investigated granites show the Jurassic to early Cretaceous thermal episode ranging from 160 Ma to 120 Ma Their corresponding initial $^{87}Sr/^{86}Sr$ ratios correlate well with their whole rock data, indicating that the mineral Rb-Sr system of the investigated granites was redistributed by the postmagmatic thermal event during Jurassic to early Cretaceous. The initial ${\varepsilon}Sr$ values for the CFGR (64.27 to 94.81) tend to be significantly lower than those for the SFGR (125.43 to 167.09). Thus it is likely that there is a marked difference in the magma source characteristics between the CFGR and the SFGR, although the possibility of an isotopic resetting event giving rise to a high apparent initial ${\varepsilon}Sr$ in the SFGR can not be ruled out. In contrast to ${\varepsilon}Sr$, both batholiths show a highly resticted and negative values of initial ${\varepsilon}Nd$, which is -14.73 to -19.53 with an average $-16.13{\pm}1.47$ in the CFGR and -14.78 to -18.59 with an average $-17.17{\pm}1.01$ in the SFGR. The highly negative initial ${\varepsilon}Nd$ values in the investigated granitoids strongly suggest that large amounts of recycled old continental components have taken part in their evolution. Furthermore, this highly resticted variation in ${\varepsilon}Nd$ is significant because it requires that the old crustal source material, from which the granitoid-producing melts were generated, should have a reasonably uniform Nd isotopic composition and also quit similar age. Calculated T2DM model ages give an average of $1.83{\pm}0.25Ga$ for CFGR and $1.96{\pm}0.19Ga$ for SFGR, suggesting the importance of a mid-Proterozoic episode for the genesis of two foliated granites. Although it is not possible to determine precisely the source rock compositions for the investigated foliatic granites, the Sr-Nd isotopic evidences indicate that midcrustal or less probably, a lower crustal granulitic source could be the most likely candidate.

  • PDF

Stable Isotope and Fluid Inclusion Studies of the Daebong Gold-silver Deposit, Republic of Korea (대봉 금-은광상에 대한 유체포유물 및 안정동위원소 연구)

  • 유봉철;이현구;김상중
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.391-405
    • /
    • 2003
  • The Daebong gold-silver deposit consists of mesothermal massive quartz veins thar are filling the fractures along fault shear (NE, NW) Bones within banded or granitic gneiss of Precambrian Gyeonggi massif. Based on vein mineralogy, ore textures and paragenesis, ore mineralization of this deposits is composed of massive white quartz vein(stage I) which was formed in the same stage by multiple episodes of fracturing and healing, and transparent quartz vein(stage II) which is separated by a major faulting event. Stage I is divided into the 3 substages. Ore minerals of each substages are as follows: 1) early stage I=magnetite, pyrrhotite, arsenopyrite, pyrite, sphalerite, chalcopyrite, 2) middle stage I=pyrrhotite, arsenopyrite, pyrite, marcasite, sphalerite, chalcopyrite, galena, electrum and 3) late stage I=pyrite, sphalerite, chalcopyrite, galena, electrum, argentite, respectively. Ore minerals of the stage II are composed of pyrite, sphalerite, chalcopyrite, galena and electrum. Systematic studies (petrography and microthermometry) of fluid inclusions in stage I and II quartz veins show fluids from contrasting physical-chemical conditions: 1) $H_2O-CO_2-CH_4-NaCl{\pm}N-2$ fluid(early stage I=homogenization temperature: 203∼3$88^{\circ}C$, pressure: 1082∼2092 bar, salinity: 0.6∼13.4 wt.%, middle stage I=homogenization temperature: 215∼28$0^{\circ}C$, salinity: 0.2∼2.8 wt.%) related to the stage I sulfide deposition, 2) $H_2O-NaCl{\pm}CO_2$ fluid (late stage I=homogenization temperature: 205∼2$88^{\circ}C$, pressure: 670 bar, salinity: 4.5∼6.7 wt.%, stage II=homogenization temperature: 201-3$58^{\circ}C$, salinity: 0.4-4.2 wt.%) related to the late stage I and II sulfide deposition. $H_2O-CO_2-CH_4-NaCl{\pm}N_2$ fluid of early stage I is evolved to $H_2O-NaCl{\pm}CO_2$ fluid represented by the $CO_2$ unmixing due to decrease in fluid pressure and is diluted and cooled by the mixing of deep circulated meteoric waters ($H_2O$-NaCl fluid) possibly related to uplift and unloading of the mineralizing suites. $H_2O-NaCl{\pm}CO_2$ fluid of stage II was hotter than that of late stage I and occurred partly unmixing, mainly dilution and cooling for sulfide deposition. Calculated sulfur isotope compositions ({\gamma}^{34}S_{H2S}$) of hydrothermal fluids (3.5∼7.9%o) indicate that ore sulfur was derived from mainly an igneous source and partly sulfur of host rock. Measured and calculated oxygen and hydrogen isotope compositions ({\gamma}^{18}O_{H_2O}$, {\gamma}$D) of ore fluids (stage I: 1.1∼9.0$\textperthousand$, -92∼-86{\textperthansand}$, stage II: 0.3{\textperthansand}$, -93{\textperthansand}$) and ribbon-banded structure (graphitic lamination) indicate that mesothermal auriferous fluids of Daebong deposit were two different origin and their evolution. 1) Fluids of this deposit were likely mixtures of $H_2O$-rich, isotopically less evolved meteoric water and magmatic fluids and 2) were likely mixtures of $H_2O$-rich. isotopically heavier $\delta$D meteoric water and magmaticmetamorphic fluids.