• Title/Summary/Keyword: magma sources

Search Result 10, Processing Time 0.021 seconds

Geochrononlogy and thermal history of the Chuncheon granite in the Gyeonggi massif, South Korea

  • Jin, Myung-Shik;Shin, Seong-Cheon;Kim, Seong-Jae;Choo, Seung-Hwan
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.122-129
    • /
    • 1993
  • We report Rb-Sr whole rock, K-Ar and fission track mineral ages for the Chuncheon granite in the Precambrian Gyeonggi massif. The Rb-Sr whole rock define an age of $196{\pm}9$ Ma with an initial ratio of $0.7159{\pm}0.0006$, suggesting that the granitic magma might have been generated from crustal sources (S-type), or probably mixed mantle and crustal materials, and emplaced into the massif in the late Triassic or the early Jurassic. K-Ar mineral ages of hornblende, muscovite and biotite are ~210 Ma, ~180 Ma and 166-170 Ma respectively, and fission track zircon and apatite ages are 65-70 Ma, ~35 Ma respectively. These ages indicate that the granitic magma might have been emplaced at about 7 to 9 km from the paleosurface, and rapidly cooled down up to $300^{\circ}C$ until middle Jurassic (~170 Ma) with a rate of about $10^{\circ}C$/Ma, due to thermal difference between the magma and the wall rock. During middle Jurassic to late Cretaceous (about 170-70 Ma), the granite pluton is assumed to have uplifted to 4 to 6 km level under the paleosurface with a rate of 30 m/Ma and slowly cooled down with a rate of about $1^{\circ}C$/Ma owing to relatively slow denudation of the massif. In late Cretaceous to the present, the pluton might have more rapidly uplifted to the present level with a rate of 85 m/Ma and rapidly cooled down with a rate of about $3^{\circ}C$/Ma compared to those of middle Jurassic to late Cretaceous time because of extensive igneous activities accompanied by tectonism in the Gyeonggi massif.

  • PDF

Petrology of the Syenites in Sancheong, Korea (경남 산청 지역의 섬장암에 관한 암석학적 연구)

  • Ok, Eun-Young;Kim, Jong-Sun;Lee, Sang-Won;Kang, Hee-Cheol
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.25-54
    • /
    • 2015
  • Syenite is not a common rock, unlike granitic rocks formed the major component of the continental crust. The aim of this study is to decipher the occurrences and detailed descriptive characteristics of the syenite distributed in Sancheong area, and to investigate the petrogenesis of the syenitic magma based on geochemical study. The dominant minerals in syenite are alkali feldspar (usually orthoclase and rarely microcline), plagioclase, amphibole, biotite, and quartz. Syenites are found in a wide variety of colors. The anhedral hornblende and biotite filling the boundary of feldspar and quartz indicate that the hydrous minerals were crystallized lately, and that water was insufficient at the beginning of crystallization in magma. According to the analysis of mineral composition, amphibole in syenite is mostly ferro-edenite, and the pressure is calculated as 3.3~4.9 kb with 11.9~17.3 km of emplacement depth. Biotite and pyroxene are plotted in the region of annite and hedenbergite, respectively. Based on petrochemical studies of major elements, syenite belongs to alkaline series, metaluminous, and I-type. On the other hand, the variation patterns of trace and rare earth elements of syenite differ from the patterns of diorite and granite. In the geochemical characteristics, syenite is different from gabbro-diorite spatially adjacent to syenite, as well as granite. These results suggest that each rock has been generated from the different sources of magma. Additionally, based on the experimental data, the syenitic magma can be formed (1) by the partial melting at a high pressure and dry system, (2) when the initial crystallization minerals to be residue with migration of the residual melts separated from the ascending cotectic magma (3) when fluorine compositions to be plentiful in the protolith and/or at depth of the magma. Based on the petrographic characteristics of the syenite, Sancheong syenitic magma may have been formed by partial melting in a dry system.

Characteristics of South Korea's Geothermal Water in Relation to Its Geological and Geochemical Feature

  • Lee, Chung-Mo;Hamm, Se-Yeong;Lee, Cholwoo;Choi, Sung-Ja;Chung, Sang Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.2
    • /
    • pp.25-37
    • /
    • 2014
  • The volcanic type of geothermal water is linked intimately to active or potentially active volcanoes and takes place near the plate boundaries. In contrast to the volcanic type, the geothermal water in Korea has a non-volcanic origin. Korea's geothermal water is classified into the residual magma (RM) type and deep groundwater (DG) type according to the criterion of $35^{\circ}C$. This study reviewed the relationship between the physical and chemical features of the 281 geothermal water sources in South Korea in terms of the specific capacity, water temperature, and chemical compositions of two different basements (igneous rock and metamorphic rock) as well as the geological structures. According to the spatial relationship between the geothermal holes and geological faults, the length of the major fault is considered a key parameter determining the movement to a deeper place and the temperature of geothermal water. A negligible relationship between the specific capacity (Q/s) and temperature was found for both the RM type and DG type with the greater specific capacities of the RM- and DG-igneous types than the RM- and DG-metamorphic types. No relationship was observed between Q/s and the chemical constituents ($K^+$, $Na^+$, $Ca^{2+}$, $Mg^{2+}$, $Zn^{2+}$, $Cl^-$, $SO_4{^{2-}}$, $HCO_3{^-}$, and $SiO_2$) in the DG-igneous and DG-metamorphic types. Furthermore, weak relationship between temperature and chemical constituents was found for both the RM type and DG type.

Some Problems on Acidic Plutonic Rocks in Korea (한국(韓國)의 성성심성암류연구(醒性深成岩類硏究)의 몇가지 과제(課題))

  • Lee, Dai Sung
    • Economic and Environmental Geology
    • /
    • v.5 no.1
    • /
    • pp.21-38
    • /
    • 1972
  • In this paper, the author discussed about following subjects for the studies of acidic plutonic rocks in Korea. (1) The criteria of distinction between ortho-origin and para.origin of acidic plutonic rocks using the statistic chemical treatment of lognormal type distribution of H.L. Arhens (1954, 1957, 1963), the normative Q-Ab-Or triangle of O.F. Tuttle and N.L. Bowen(1958), plagioclase twin type of M. Gorai(1952) and optical measurement of ordering degree of plagioclase of K. Uruno(1963), (2) Macroscopic structural classification of migmatites of K.R. Mehnert(l968), (3) Volcano-plutonism comparing the geological features in the younger orogenic belts in Japan and Cordillera in America and (4) The original sources of granitic magma in the viewpoint of isotope geology.

  • PDF

Geochemistry of Granites in the Southern Gimcheon Area of Korea (김천남부에 분포하는 화강암류의 지구화학)

  • 윤현수;홍세선
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.16-31
    • /
    • 2003
  • The granites in the southern Gimcheon area can be divided into two parts, marginal hornblende biotite granodiorite (Mgd) and central biotite granodiorite to granite (Cgd). Mgd and Cgd are gray in color and display gradational contact relations and are mainly composed of coarse-grained and medium-grained rocks, respectively. Mgd has more frequent and larger mafic enclaves than Cgd, and the two granites partly show parallel foliation at thire contact with gneisses. From representative samples of the granites, K-Ar biotite ages of 197∼207 Ma were obtained. Considering the blocking temperature of biotite, it is suggested that the emplacement age of the granitic magma was probably late Triassic. The anorthite contents of plagioclases in Mgd display less variation than those of Cgd, indicating that Mgd crystallized within a narrow range of temperatures. In the Al$\_$total/-Mg diagram, the biotites from the granites plot within the subalkaline field, and the smooth slope indicates differentiation from a single magma. All amphiboles from the granites belong to magnesio-hornblende. The linear trends of major oxides, AFM and Ba-Sr-Rb indicate that Mgd and Cgd were fractionally differentiated from a single granitic magma body crystallizing from the margin inwards. The relations of modal (Qz+Af) vs. Op, K$_2$O vs. Na$_2$O, Fe$_2$ $O_3$ vs. FeO, Fe$\^$+3/(Fe$\^$+3/+Fe$\^$+2/) and K/Rb vs. Rb/Sr show that they belong to I-type and magnetite-series granitic rocks developed by the progressive melting products of fixed sources. REE data, normalized to chondrite value, have trends of enriched LREE and depleted HREE together with weakly negative Eu anomalies.

A Review on Mineralogical and Geochemical Characteristics of Seafloor Massive Sulfide Deposits in Mid-Ocean Ridge and Volcanic Arc Settings: Water-Rock Interaction and Magmatic Contribution (중앙해령 및 섭입대 화산호 지역 해저열수광상의 광물·지구화학적 특성 고찰: 물-암석 상호작용 및 마그마 영향)

  • Choi, Sun Ki
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.465-475
    • /
    • 2022
  • The seafloor massive sulfide deposits are important mineral resources for base and precious metals, and their ore genesis and metal contents are mainly controlled by wall-rock leaching process and/or magmatic volatile input from the underlying magma chamber. However, the contribution of two different metal sources to the seafloor hydrothermal mineralization significantly varies in diverse geological settings and thus still remains controversial. In this review, mineralogical and geochemical characteristics of SMS deposits from mid-ocean ridges (MORs) and volcanic arcs were investigated to understand the contribution from different metal sources and to suggest future challenges that need to be addressed. As a result, the genetic occurrences of enargite and cubanite, galena and barite indicate the effects of magmatic input and water-rock interaction, respectively. Also, the distributional behaviors of Co, As, and Hg in pyrite and FeS content of sphalerite could be useful empirical indicators to discriminate the significant roles of different metal sources between MOR and Arc settings. To date, as most studies have focused on sulfide samples recovered from the seabed, further studies on magmatic sulfides and sulfate minerals are required to fully understand the genetic history of SMS deposits.

Tholeitic volcanism in Cheju Island, Korea (제주도의 솔리아이트 화산활동)

  • 박준범;권성택
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.66-83
    • /
    • 1996
  • We report petrography, mineral chemistry, and major and trace element chemistry for rare tholeiites in Cheju island where alkalic rocks predominate. Available age data indicate that the tholeiitic magmatism was younger than 0.49Ma, possibly younger than 0.17 Ma. The tholeiites are generally fine-grained, porphyritic rock and show intergranular texture with lath-shaped plagioclase ($An_{61-46}$), orthopyroxene (bronzite) and olivine ($Fo_{78-67}$). Characteristically, two kinds of clinopyroxene (pigeonite and augite) occur only in groundmass. The tholeiites have normative quartz and show limited compositional variations ($SiO_2$=51.0-52.5 wt%; Mg#=54-60). Major and transitional metal element variations of tholeiites are distinct from those of alkaline rocks in MgO diagram, suggestingthat the two rock types cannot be simply related to differentiation process from the same magma. The ratios among $K_2O$, Rb, Ba, Nb and La are similar for both tholeiites and alkali basalts, however the ratios between the elements (P, Y and Yb) having an affinity with garnet and the above elements are higher for tholeiites than for alkali basalts. These trace element ratios suggest that the tholeiites and alkali basalts were produced by different degrees of partial melting from a similar sources material (garnet lherzolite mantle).

  • PDF

Granite Suite and Supersuite for the Triassic Granites in South Korea (우리나라 트라이아스기 화강암의 스위트/슈퍼스위트 분류)

  • Jwa Yong-Joo;Kim Jong-Sun;Kim Kun-Ki
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.4 s.42
    • /
    • pp.226-236
    • /
    • 2005
  • Using the concept of granite suite/supersuite we hierarchically divided the Triassic granites in South Korea which have spatio-temporally close relationships each other. Among the Triassic granites in the Okcheon belt (western Yeongnam massif), the Baegrok granite and the Jeomchon granite can be grouped into one suite, the Baegrok suite, whereas the Cheongsan granite into the Cheongsan suite. These two suites can be grouped again into a larger supersuite, the Baegrok supersuite, on the basis of the similarity in the source rocks and the contrasts in the petrographic and geochemical characteristics. Three Triassic granites in the Gyeongsang basin - the Yeongdeok granite, the Yeonghae granite, and the Cheongsong granite - can be grouped into the Yeongdeok suite, Yeonghae suite and Cheongsong suite, respectively. These three suites can be grouped again into a larger supersuite, the Yeongdeok supersuite, on the basis of the similarity in the source rocks and the contrasts in the petrographic and geochemical characteristics. Nd-Sr isotopic signatures for the Baegrok supersuite are quite distinct from those for the Yeongdeok supersuite, indicating that the source materials of each granitic magma were not identical. The source rocks for the Baegrok supersuite are thought to be a mixture of two crustal components of the Yeongnam massif, whereas those for the Yeongdeok supersuite to be a mixture of the depleted mantle with the crustal components of the Yeongnam massif. The fact that the two contemporaneous granite supersuites were derived from the different sources can be explained by the difference of the tectonic environments where the granitic magmas were produced.

Geochemical Characterisation of Magnesian Intrusives within High Grade Migmatite Gneiss Terrain: Insight from Plutons around Iwo Area, Southwest Nigeria

  • Ogungbesan, Gbenga O.;Afolabi, Adegoke O.;Mustapha, Adedamola H.;Jimoh, Razak O.;Ajibade, Olumuyiwa M.;Okunola, Olufemi W.
    • Economic and Environmental Geology
    • /
    • v.57 no.5
    • /
    • pp.609-632
    • /
    • 2024
  • Magnesian granitoids, ranging from quartz-syenite to granodiorites of varied mineralogical composition, are poorly studied in metamorphosed terrains of Proterozoic eon, unlike their ferroan variety. Geochemical traits of magnesian granitoids in southwest Nigeria's Precambrian basement are investigated to understand their chemistry and evolutionary origins, such as continental collision events and tectonic settings. Four intrusive units based on their mineralogical compositions were identified as quartz syenite, porphyritic granodiorite, tonalite-trondhemite-graniodiorite (TTG) component of the high-grade migmatite gneiss, and charnockite (with granodioritic compositions). These rocks contain alkali feldspar, plagioclase, quartz, and biotite, the main mineral phases that are common to them. Pyroxene and garnet were observed in the quartz-syenite and charnockite, while hornblende crystals were found in quartz syenite, porphyritic granodiorite, and TTG. Geochemical analysis showed average silica and alumina concentrations accordingly: quartz syenite (59.28% SiO2, 13.28% Al2O3), porphyritic granodiorite (58.80% SiO2, 16.59% Al2O3), TTG (59.07% SiO2, 15.56% Al2O3), and charnockite (53.43% SiO2, 18.06% Al2O3). The average Fe/Mg ratios were 1.14 (quartz syenite), 1.78 (porphyritic granodiorite), 1.66 (TTG), and 1.80 (charnockite), and total alkali values were 9.98% (quartz syenite), 7.79% (porphyritic granodiorite), 9.11% (TTG), and 6.56% (charnockite). Based on their Fe/Mg ratio, alumina saturation index (ASI) (0.63-0.88), and Modified Alkali Lime Index (MALI) these rocks were characterised as metaluminous magnesian with alkali-calcic to alkalic nature. Variable LREE enrichment and europium anomalies were observed, with the quartz-syenite having the highest LREE enrichment and lowest Eu/Eu* (av.0.67). The plot of Rb vs Y+Nb showed that these intrusives are post-collision plutons, with the quartz syenite samples plotting in the syn-collision granite (syn-COLG) field while the porphyritic granodiorite and the charnockite plotted in the volcanic arc granite (VAG) field. These rocks must have been derived from partially melting the upper continental crust and deeper crust of possible mantle materials and emplaced as Pan-African post-orogenic plutons. The tectonic discrimination diagram for the granitoids implied late orogenic to post-collision uplift, collision arc events, and granite magmatism as the dominant events which characterised the Pan-African orogeny.

Petrogenetic Study on the Foliated Granitoids in the Chonju and the Sunchang area (II) - In the Light of Sr and Nd Isotopic Properites - (전주 및 순창지역에 분포하는 엽리상 화강암류의 성인에 대한 연구 (II) - Sr 및 Nd 동위원소적 특성을 중심으로 -)

  • Na, Choon-Ki;Lee, In-Seong;Chung, Jae-Il
    • Economic and Environmental Geology
    • /
    • v.30 no.3
    • /
    • pp.249-262
    • /
    • 1997
  • The Sr and Nd isotopic compositions of two foliated granitic plutons located in the Chonju and Sunchang area were determined in order to reconfirm the intrusion ages of granitoids and to study the sources of granitic magmas. The best defined Rb-Sr isochron for the whole rock samples of the Chonju foliated granite (CFGR) give an age of $284{\pm}12Ma$, suggesting early Permian intrusion age. In contrast, the whole rock Rb-Sr data of the Sunchang foliated granite (SFGR) scatter widely on the isochron diagram with very little variation in the $^{87}Rb/^{86}Sr$ ratios and, therefore, yield no reliable age information. Futhermore they show the concordance of mineral and whole rock Rb-Sr isochron and divide into two linear groups with roughly the same slopes and significantly different $^{87}Sr/^{86}Sr$ ratios, indicating some kind of Rb-Sr distortion in whole rock scale and a difference in source material and/or magmatic evolution between two subsets. The reconstructed isochrons of 243 Ma, which was defined from the proposed data by the omission of one sample point with significantly higher $^{87}Rb/^{86}Sr$ ratio than the others, and 252 Ma, from the combined data of it and some of this study, strongly suggest the possibility that the SFGR was intruded appreciably earlier than had previously been proposed, although the reliability of these ages still questionable owing to high scatter of data points and, therefore, further study is necessary. All mineral isochrons for the investigated granites show the Jurassic to early Cretaceous thermal episode ranging from 160 Ma to 120 Ma Their corresponding initial $^{87}Sr/^{86}Sr$ ratios correlate well with their whole rock data, indicating that the mineral Rb-Sr system of the investigated granites was redistributed by the postmagmatic thermal event during Jurassic to early Cretaceous. The initial ${\varepsilon}Sr$ values for the CFGR (64.27 to 94.81) tend to be significantly lower than those for the SFGR (125.43 to 167.09). Thus it is likely that there is a marked difference in the magma source characteristics between the CFGR and the SFGR, although the possibility of an isotopic resetting event giving rise to a high apparent initial ${\varepsilon}Sr$ in the SFGR can not be ruled out. In contrast to ${\varepsilon}Sr$, both batholiths show a highly resticted and negative values of initial ${\varepsilon}Nd$, which is -14.73 to -19.53 with an average $-16.13{\pm}1.47$ in the CFGR and -14.78 to -18.59 with an average $-17.17{\pm}1.01$ in the SFGR. The highly negative initial ${\varepsilon}Nd$ values in the investigated granitoids strongly suggest that large amounts of recycled old continental components have taken part in their evolution. Furthermore, this highly resticted variation in ${\varepsilon}Nd$ is significant because it requires that the old crustal source material, from which the granitoid-producing melts were generated, should have a reasonably uniform Nd isotopic composition and also quit similar age. Calculated T2DM model ages give an average of $1.83{\pm}0.25Ga$ for CFGR and $1.96{\pm}0.19Ga$ for SFGR, suggesting the importance of a mid-Proterozoic episode for the genesis of two foliated granites. Although it is not possible to determine precisely the source rock compositions for the investigated foliatic granites, the Sr-Nd isotopic evidences indicate that midcrustal or less probably, a lower crustal granulitic source could be the most likely candidate.

  • PDF