• Title/Summary/Keyword: maeA

검색결과 637건 처리시간 0.026초

하모니 검색 알고리즘을 이용한 포트홀 발생 개수 예측 모형 (A Predictive Model for the Number of Potholes Using Basic Harmony Search Algorithm)

  • 김도완;이상염;김동호
    • 한국건설관리학회논문집
    • /
    • 제15권4호
    • /
    • pp.150-158
    • /
    • 2014
  • 최근 급격한 기후 변화에 관련하여 아스팔트 도로의 손상이 다발적으로 발생하고 있다. 이러한 현상을 해결 및 방지하기 위해서 세계 각국에서 다양한 연구를 수행하고 있다. 이와 관련하여, 본 연구에서는 서울시에서 발생하는 포트홀 수에 대한 예측모형을 개발하였다. 예측모델을 개발함과 동시에 다양한 독립변수 중 실제 포트홀 발생에 영향을 미치는 요소를 파악하기 위해 경험적인 방법과 통계적인 방법을 활용하였다. 예측모형은 BHS (Basic Harmony Search) 알고리즘을 이용하여 결정하였으며, 기후자료와 교통량 자료 및 포트홀 발생 자료를 기반으로 예측이 이루어진다. 하모니 검색 알고리즘을 이용하여 예측모델을 결정하는 과정에서 PAR(Pitch Adjusting Rate)과 HMCR(Harmony Memory Considering Rate)의 영향을 파악하기 위해 이 값을 변화시키며 적합성을 판단하였다. 예측모델은 Training Data(2011년, 2012년 및 2013년 자료)로 인해 구성되며, 결정된 모델의 적합성을 판단하기 위해 Testing Set에 적용하도록 하였다. 기본적인 예측모델의 적합성 판단은 RMSE(Root Mean Squared Error), MAE(Mean Absolute Error), 결정계수(Coefficient of Determination)를 이용하도록 하였다.

Safety and Effectiveness of Passeo-18 Lux Drug-Coated Balloon Catheter in Infrainguinal Endovascular Revascularization in the Korean Population: A Multicenter Post-Market Surveillance Study

  • Tae Won Choi;Je Hwan Won;Hwan Jun Jae;Yong Sun Jeon;Sang Woo Park;Gi-Young Ko;Nam Yeol Yim;Jong Yun Won;Chang Won Kim;Jinoo Kim
    • Korean Journal of Radiology
    • /
    • 제25권6호
    • /
    • pp.565-574
    • /
    • 2024
  • Objective: To evaluate the safety and clinical outcomes of the Passeo-18 Lux drug-coated balloon (DCB) in endovascular revascularization procedures under real-world conditions in a Korean population with atherosclerotic disease of the infrainguinal arteries, including below-the-knee (BTK) arteries. Materials and Methods: Eight institutions in the Republic of Korea participated in this prospective, multicenter, single-arm, post-market surveillance study. Two hundred patients with Rutherford class 2-5 peripheral arterial disease and infrainguinal lesions suitable for endovascular treatment were competitively enrolled. Data were collected at baseline, the time of intervention, discharge, and 1-, 6-, 12-, and 24-month follow-up visits. The primary safety endpoint was freedom from major adverse events (MAE) within 6 months (except when limiting the time frame for procedure- or device-related mortality to within 30 days), and the primary effectiveness endpoint was freedom from clinically driven target lesion revascularization (CD-TLR) within 12 months after the procedure. Results: A total of 197 patients with 332 target lesions were analyzed. Two-thirds of the patients had diabetes mellitus, and 41.6% had chronic limb-threatening ischemia. The median target lesion length was 100 mm (interquartile range: 56-133 mm). Of the target lesions, 35.2% were occlusions, and 14.8% were located in the BTK arteries. Rate of freedom from MAE was 97.9% at 6 months, and the rate of freedom from CD-TLR was 95.0% and 92.2% at 12 and 24 months, respectively. Subgroup analysis of 43 patients and 49 target lesions involving the BTK arteries showed rate of freedom from MAE of 92.8% at 6 months and rates of freedom from CD-TLR of 88.8% and 84.4% at 12 and 24 months, respectively. Conclusion: The results of the present study, including the BTK subgroup analysis, showed outcomes comparable to those of other DCB studies, confirming the safety and effectiveness of Passeo-18 Lux DCB in the Korean population.

밀집 샘플링 기법을 이용한 네트워크 트래픽 예측 성능 향상 (Improving prediction performance of network traffic using dense sampling technique)

  • 이진선;오일석
    • 스마트미디어저널
    • /
    • 제13권6호
    • /
    • pp.24-34
    • /
    • 2024
  • 시계열인 네트워크 트래픽 데이터로부터 미래를 예측할 수 있다면 효율적인 자원 배분, 악성 공격에 대한 예방, 에너지 절감 등의 효과를 거둘 수 있다. 통계 기법과 딥러닝 기법에 기반한 많은 모델이 제안되었는데, 이들 연구 대부분은 모델 구조와 학습 알고리즘을 개선하는 일에 치중하였다. 모델의 예측 성능을 높이는 또 다른 접근방법은 우수한 데이터를 확보하는 것이다. 이 논문은 우수한 데이터를 확보할 목적으로, 시계열 데이터를 증강하는 밀집 샘플링 기법을 네트워크 트래픽 예측 응용에 적용하고 성능 향상을 분석한다. 데이터셋으로는 네트워크 트래픽 분석에 널리 사용되는 UNSW-NB15를 사용한다. RMSE와 MAE, MAPE를 사용하여 성능을 분석한다. 성능 측정의 객관성을 높이기 위해 10번 실험을 수행하고 기존 희소 샘플링과 밀집 샘플링의 성능을 박스플롯으로 비교한다. 윈도우 크기와 수평선 계수를 변화시키며 성능을 비교한 결과 밀집 샘플링이 일관적으로 우수한 성능을 보였다.

프로브 차량 기반 표본 OD의 전수화 기법 (A Methodology for Expanding Sample OD Based on Probe Vehicle)

  • 백승걸;정소영;김현명;최기주
    • 대한교통학회지
    • /
    • 제26권2호
    • /
    • pp.135-145
    • /
    • 2008
  • 기종점자료(Origin-Destination 자료: 이하 OD)는 교통수요예측에 있어 필수적인 정보로서 이를 실제조사하거나 또는 추정하기 위하여 수많은 기법들이 활용되었다. 기존의 OD 추정기법은 일정한 가구 표본을 추출하여 이를 전수화하는 것이 일반적이었으나, 정확도의 문제점을 내포하고 있었다. 이를 보완하기 위하여 링크 교통량, 표본링크이용비 등의 추가 정보를 활용하여 OD를 추정하는 연구들이 지속적으로 이루어지고 있다. 본 연구는 프로브 차량자료에서 수집된 정보를 추가 정보로 활용하여 OD를 추정하는 연구로 시 공간적으로 변동하는 적정 표본율을 찾아내는 것을 목표로 한다. 본 연구에서는 각 링크의 교통량 오차율을 목적함수로 설정하였으며, 가상 네트워크에 대한 사례분석 결과 전수화된 OD와 실제OD 간의 MAE는 약 5.28%로 나타났다. 유비퀴터스 환경 하에서 획득된 다양한 실시간 정보는 본 연구에서 제시된 방법에 의해 활용될 수 있을 것으로 판단되며, 이와 관련한 연구의 한계와 향후 과제를 제시하였다.

혼잡상황에서 링크미통과 GPS 프로브데이터를 활용한 링크통행시간 추정기법 개발 (Link Travel Time Estimation Using Uncompleted Link-passing GPS Probe Data in Congested Traffic Condition)

  • 심상우;최기주
    • 대한교통학회지
    • /
    • 제24권5호
    • /
    • pp.7-18
    • /
    • 2006
  • 신뢰성 있는 통행시간정보제공과 교통정보센터의 효율적인 운영을 위해 통상 국내에서는 5분 주기로 통행시간자료를 수집하고 있다. 그러나 주기 단위로 수집할 경우 수집주기내에 링크를 통과하지 못하는 데이터는 사용할 수 없으며, 특히 혼잡시 이러한 데이터가 많이 발생하므로 혼잡정보가 늦게 제공되는 문제점이 있다. 본 연구에서는 이러한 문제점을 해결하기 위해 대기행렬소멸길이와 신호현시 등을 추정하여 링크통행시간 추정하는 기법을 개발하였다 현장실험을 기반으로 MAPE와 MAE를 사용하여 평가한 결과 제안기법의 정확도는 1.98%, 4.75초로 실측치와 큰 차이를 보이지 않았다. 제안기법은 혼잡할 경우에 GPS기반으로 부족한 데이터의 절대량을 보족해 줄 수 있는 대안으로 기대된다.

개의 PPG와 DNN를 이용한 혈당 예측 - 선행연구 (Blood glucose prediction using PPG and DNN in dogs - a pilot study)

  • 박철구;최상기
    • 디지털정책학회지
    • /
    • 제2권4호
    • /
    • pp.25-32
    • /
    • 2023
  • 논문은 PPG 기반 센서에서 측정한 심박수(HR), 심박변이도(HRV) 데이터를 기반으로 DNN(Deep Neural Network) 혈당예측 모델을 개발하는 연구이다. 혈당 예측은 다층퍼셉트론(MLP) 신경망을 이용하였다. DNN 심층학습은 11의 독립변수가 있는 입력층, 은닉층, 출력층으로 구성된다. 혈당 예측모델의 학습결과는 MAE=0.3781, MSE=0.8518, 및 RMSE=0.9229이며, 결정계수(R2)는 0.9994이다. PPG기반의 디지털기기를 이용한 비채혈적 생체신호를 이용하여 혈당관리의 가능성을 확인하였다. PPG기반의 표준화된 활력신호 획득 및 해석법, 다량의 데이터기반 심층학습(Deep Learning)의 데이터셋, 정확성를 실증하는 연구가 이어진다면 개의 혈당관리에 편이성과 대안적인 방법을 제공할 수 있을 것이다.

적응 뉴로-퍼지를 이용한 도시부 비신호교차로 교통사고예측모형 구축 (Building a Traffic Accident Frequency Prediction Model at Unsignalized Intersections in Urban Areas by Using Adaptive Neuro-Fuzzy Inference System)

  • 김경환;강정현;강종호
    • 대한토목학회논문집
    • /
    • 제32권2D호
    • /
    • pp.137-145
    • /
    • 2012
  • 경찰청 발표 자료에 따르면 2010년 우리나라에서 발생한 교통사고 건수는 226,878건으로 전체 교통사고 중 교차로가 차지하는 비중이 44.8%로 교차로 사고는 교통사고 중 많은 부분을 차지하고 있다. 이 중 신호교차로 교통사고에 대한 연구는 지속적으로 이루어지고 있는 반면에 비신호교차로에 대한 연구는 아직 부족한 실정이다. 본 연구는 환경적 요인으로 퍼지적 성격을 가진 교통량, 차로폭, 시거를 입력변수로 비신호교차로에서의 사고건수예측을 위한 ANFIS(Adaptive Neuro-Fuzzy Inference System) 모형을 구축하였다. 이렇게 구축된 모형의 예측력은 검증자료를 이용한 실측치와 추론치를 비교함으로써 평가되었다. 본 모형의 예측력은 결정계수인 $R^2$와 평균절대오차(MAE), 평균제곱근오차(MSE)를 통하여 적합성을 평가하였으며, 이들은 각각 평가 결과 0.9817, 0.4773, 0.3037로 나타나 모형의 설명력이 우수한 것으로 평가된다. 본 연구의 비신호 교차로 사고예측분석 연구결과는 비신호교차로의 안전 대책 수립 및 교통사고 개선사업을 위한 기초자료를 제공할 것으로 사료된다.

The Ratio of Descending Aortic Enhancement to Main Pulmonary Artery Enhancement Measured on Pulmonary CT Angiography as a Finding to Predict Poor Outcome in Patients with Massive or Submassive Pulmonary Embolism

  • Park, Chi-Young;Yoo, Seung-Min;Rho, Ji-Young;Ji, Young-Geon;Lee, Hwa-Yeon
    • Tuberculosis and Respiratory Diseases
    • /
    • 제72권4호
    • /
    • pp.352-359
    • /
    • 2012
  • Background: The purpose of this study was to evaluate whether measuring the ratio of descending aortic enhancement (DAE) to main pulmonary artery enhancement (MPAE) on pulmonary computed tomography angiography (PCTA) can predict poor outcome in patients with acute massive or submassive pulmonary embolism (PE). Methods: We retrospectively, reviewed computed tomgraphy findings and charts of 37 patients with acute PE and right ventricular dysfunction. We divided the enrolled patients into 3 groups; group Ia (n=8), comprised of patients with major adverse event (MAE); group Ib (n=5), consisted of those with PE-related MAE; and group II (n=29), those without MAE. We analyzed the right ventricular diameter (RVD)/left ventricular diameter (LVD) and DAE/MPAE on PCTA. Results: For observer 1, RVD/LVD in group Ia ($1.9{\pm}0.36$ vs. $1.44{\pm}0.38$, p=0.009) and group Ib ($1.87{\pm}0.37$ vs. $1.44{\pm}0.38$, p=0.044) were significantly higher than that of group II. For observer 2, RVD/LVD in group Ia ($1.71{\pm}0.18$ vs. $1.41{\pm}0.47$, p=0.027) was significantly greater than that of group II, but RVD/LVD of group Ib was not ($1.68{\pm}0.2$ vs. $1.41{\pm}0.47$, p=0.093). For both observers, there was a significant difference of DAE/MPAE between group Ib and group II ($0.32{\pm}0.15$ vs. $0.64{\pm}0.24$, p=0.005; $0.34{\pm}0.16$ vs. $0.64{\pm}0.22$, p=0.004), but no significant difference of DAE/MPAE between group Ia and group II ($0.51{\pm}0.3$ vs. $0.64{\pm}0.24$, p=0.268; $0.53{\pm}0.29$ vs. $0.64{\pm}0.22$, p=0.302). Intra-class correlation coefficient (ICC) for the measurement of DAE/MPAE (ICC=0.97) was higher than that of RVD/LVD (ICC=0.74). Conclusion: DAE/MPAE measured on PCTA may predict PE-related poor outcomes in patients with massive or submassive PE with an excellent inter-observer agreement.

딥러닝 알고리즘을 이용한 강우 발생시의 유량 추정에 관한 연구 (A study on discharge estimation for the event using a deep learning algorithm)

  • 송철민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.246-246
    • /
    • 2021
  • 본 연구는 강우 발생시 유량을 추정하는 것에 목적이 있다. 이를 위해 본 연구는 선행연구의 모형 개발방법론에서 벗어나 딥러닝 알고리즘 중 하나인 합성곱 신경망 (convolution neural network)과 수문학적 이미지 (hydrological image)를 이용하여 강우 발생시 유량을 추정하였다. 합성곱 신경망은 일반적으로 분류 문제 (classification)을 해결하기 위한 목적으로 개발되었기 때문에 불특정 연속변수인 유량을 모의하기에는 적합하지 않다. 이를 위해 본 연구에서는 합성곱 신경망의 완전 연결층 (Fully connected layer)를 개선하여 연속변수를 모의할 수 있도록 개선하였다. 대부분 합성곱 신경망은 RGB (red, green, blue) 사진 (photograph)을 이용하여 해당 사진이 나타내는 것을 예측하는 목적으로 사용하지만, 본 연구의 경우 일반 RGB 사진을 이용하여 유출량을 예측하는 것은 경험적 모형의 전제(독립변수와 종속변수의 관계)를 무너뜨리는 결과를 초래할 수 있다. 이를 위해 본 연구에서는 임의의 유역에 대해 2차원 공간에서 무차원의 수문학적 속성을 갖는 grid의 집합으로 정의되는 수문학적 이미지는 입력자료로 활용했다. 합성곱 신경망의 구조는 Convolution Layer와 Pulling Layer가 5회 반복하는 구조로 설정하고, 이후 Flatten Layer, 2개의 Dense Layer, 1개의 Batch Normalization Layer를 배열하고, 다시 1개의 Dense Layer가 이어지는 구조로 설계하였다. 마지막 Dense Layer의 활성화 함수는 분류모형에 이용되는 softmax 또는 sigmoid 함수를 대신하여 회귀모형에서 자주 사용되는 Linear 함수로 설정하였다. 이와 함께 각 층의 활성화 함수는 정규화 선형함수 (ReLu)를 이용하였으며, 모형의 학습 평가 및 검정을 판단하기 위해 MSE 및 MAE를 사용했다. 또한, 모형평가는 NSE와 RMSE를 이용하였다. 그 결과, 모형의 학습 평가에 대한 MSE는 11.629.8 m3/s에서 118.6 m3/s로, MAE는 25.4 m3/s에서 4.7 m3/s로 감소하였으며, 모형의 검정에 대한 MSE는 1,997.9 m3/s에서 527.9 m3/s로, MAE는 21.5 m3/s에서 9.4 m3/s로 감소한 것으로 나타났다. 또한, 모형평가를 위한 NSE는 0.7, RMSE는 27.0 m3/s로 나타나, 본 연구의 모형은 양호(moderate)한 것으로 판단하였다. 이에, 본 연구를 통해 제시된 방법론에 기반을 두어 CNN 모형 구조의 확장과 수문학적 이미지의 개선 또는 새로운 이미지 개발 등을 추진할 경우 모형의 예측 성능이 향상될 수 있는 여지가 있으며, 원격탐사 분야나, 위성 영상을 이용한 전 지구적 또는 광역 단위의 실시간 유량 모의 분야 등으로의 응용이 가능할 것으로 기대된다.

  • PDF

심탄도와 인공지능을 이용한 혈당수치 예측모델 연구 (The study of blood glucose level prediction model using ballistocardiogram and artificial intelligence)

  • 최상기;박철구
    • 디지털융복합연구
    • /
    • 제19권9호
    • /
    • pp.257-269
    • /
    • 2021
  • 논문은 심탄도(BCG, Ballistocardiogram) 센서를 이용하여 생체신호 데이터를 비침습, 무구속적인 방식으로 수집하고, ICT 기술과 고성능 컴퓨팅 환경에서 인공지능 기계학습 알고리즘을 활용하여 데이터 기반 혈당 예측 알고리즘 모델 개발 및 검증하는 방법을 제시하고 연구하는 것이다. 혈당수치 예측모델은 MLP 아키텍처에 입력노드는 심박수, 호흡수, 심박출량, 심박변이도, SDNN, RMSSD, PNN50, 나이, 성별이며, 은닉층 7개를 사용하였다. 실험 결과는 5회 실험한 학습데이터의 평균 MSE, MAE 및 RMSE 값은 각각 0.5226, 0.6328 및 0.7692이며 검증데이터 평균 값은 각각 0.5408, 0.6776, 0.7968이었으며, 결정계수(R2) 수치는 0.9997의 결과를 보였다. 데이터를 기반으로 한 혈당수치를 예측하는 모델을 표준화하고 데이터셋 수집과 예측 정확성을 검증하는 연구가 계속적으로 진행된다면 비침습 방식의 혈당 수준 관리에 활용될 수 있을 것으로 사료된다.