• Title/Summary/Keyword: macrophyte

Search Result 54, Processing Time 0.023 seconds

Inhibition of Submerged Macrophytes on Phytoplankton I. Field Evidence for Submerged Macrophyte Inhibition on Phytoplankton Biomass

  • Joo, Sung-Bae;Ji, Young-Jung;Park, Sang-Kyu
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.4
    • /
    • pp.511-519
    • /
    • 2007
  • It is known that phytoplankton biomass or turbidity are lower in waters with submerged macrophytes than those without submerged plants at a given nutrient level. We hypothesize that presence of submerged macrophytes would lower phytoplankton biomass below levels expected by total phosphorus levels through various mechanisms and that phytoplankton biomass would decrease more as the biomass increase of the submerged macrophytes. To find submerged macrophytes effectively lowering phytoplankton growth, we conducted spatial field surveys at 21 water bodies and a temporal monitoring at Seung-un 1 Reservoir, Anmyyeondo Island. We measured chlorophyll ${\alpha}$ concentrations and total phosphorus (TP) concentrations from waters in patches of submerged macrophytes with measurements of submerged plant biomass. Majority of our sites with submerged macrophytes showed much less chlorophyll a concentrations than the predicted ones from literature. Among submerged macrophytes studied, Myriophyllum spicatum and Hydrilla verticillata showed patterns of lowering chlorophyll ${\alpha}/TP$ ratios with increase of their biomass in both spatial and temporal surveys.

Effect Analysis of Reservoir Water Quality Improvement with Floating Islands (인공식물섬의 호소 수질개선 효과분석(지역환경 \circled2))

  • 박병흔;권순국;윤경섭
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.550-556
    • /
    • 2000
  • Three floating islands were constructed on the surface of the reservoir, each consisting of 10 16-㎡ (4${\times}$4 m) segments, made of wood frames and floats. Three species of aquatic macrophytes were planted in each island on June, 1998. Phragmites australis was considered as the suitable aquatic macrophyte for the floating islands since it maintained the most efficient root and shoot balance among the macrophytes. The net primary productivity of P. Australis was 3,604 g/㎡ based on dry weight in 1999, with uptake rates of nitrogen and phosphorus estimated at 77.4 g/㎡/yr and 5.7 g/㎡/yr, respectively. The result of water quality simulation for the floating islands showed that, through adsorption of nutrients and light screening, they could reduce the amount of phytoplankton, thereby decreasing COD concentration.

  • PDF

Water quality improvement by the flating islands in a reservoir (인공식물섬을 이용한 저수지 수질개선)

  • 박병흔;권순국;장정렬
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.645-650
    • /
    • 1999
  • Three floating islands have been constructed for water quality improvement for a polluted irrigation reservoir. Phragmites australis was considered as the suitable aquatic macrophyte of the floating island. From April to August in 1999, the net primary productivity of Phragmites australis was 3,530gDM/㎡. Uptake rates of nitrogen and phoshorous by Phragmites australis planted in the floating island could be estimated to 10.2kg/d/ha and 0.8kg/d/ha, respectively. The floating islands worked well as a habitat of fish and prawns. Therefore, the floating islands could be evaluated a good measure ofwater quality improvement for irrigation reservoir.

  • PDF

Distribution Dynamics of Fish Community in Shallow Wetland by Environmental Variables (얕은 습지에서 환경 요인에 따른 어류상 분포 특성)

  • Choi, Jong-Yun;Jo, Hyunbin;Kim, Seong-Ki;La, Geung-Hwan;Joo, Gea-Jae
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.3
    • /
    • pp.391-400
    • /
    • 2015
  • In order to investigate the distribution and species composition of fish in shallow wetlands that might be affected by environmental factors, we investigated the physicochemical parameters, macrophytes biomass, and fish assemblage in 24 shallow wetlands in South Korea from May to June, 2012. In this study, a total of 20 fish species were identified, and Cypinidae were found to be the most dominant species. Physicochemical parameters and macrophyte biomass were different in the survey sites, and macrophytes biomass, in particular, showed a positive relationship with fish abundance in stepwise multiple regression (df=1, F=32.00, P=0.001). According to the result of the cluster analysis between survey sites, the survey sites were divided into three groups in accordance with species composition of fish in relation to macrophytes biomass. In the wetlands of the first group, Lepomis macrochirus which belongs to Centrarchidae was found to be dominant and other fish assemblages were hardly seen. In the second group, unlike the first group, Carassius auratus that belongs to Cypinidae was found to be dominant. In the third group, Lepomis macrochirus was found to be as dominant as the first group but various other fish species appeared. Where there was abundance of the main food sources (i. e. zooplankton) of fish in the survey sites, there were more diverse macrophyte biomass. Consequently, it is proven that macrophytes strongly affect the species composition and abundance of fish, and high biomass of macrophytes support high assemblage of fish. Based on these results, we recommend establishing diverse aquatic macrophytes communities when restoring or creating wetlands to assure high diversity of fish species that use macrophytes as their habitat.

Feasibility Study of Agronomic Application of Treated Sewage for Paddy Rice Culture

  • Woo, Sun-Ho;Yoon, Chun-Gyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.433-441
    • /
    • 2000
  • A feasibility study was performed to examine the agronomic application of treated sewage on paddy rice culture by field experiment for two consecutive years. The domestic sewage was treated by the constructed wetland system which was in subsurface flow type and consisted of sand and macrophyte. The effluent of the wetland system was used for irrigation water. The effluent was diluted to maintain the total nitrogen concentration below $26mg{\cdot}L^{-1}$ in the first year and used without dilution in the second year experiment. Growth components and yields were compared against the CONTROL plot where conventional method was applied. And also, soil characteristics of the plots before and after reclaimed sewage irrigation were analyzed. Generally, addition of the treated sewage to the irrigation water showed no adverse effects on paddy rice culture, and even enhancement was noticed in both growth and yield. Irrigation of treated sewage after concentration adjusted with conventional fertilization showed the better result, and the yield exceeded that of CONTROL case where clean water was irrigated. Soil characteristics changed after irrigation, and significant EC increasing was observed for the reclaimed sewage irrigation plots. From this study, it appears that reuse of treated sewage, as supplemental irrigation water could be a feasible and practical alternative. For full-scale application, further study is recommended on the specific guideline of major water quality components in treated sewage for irrigation and public health.

  • PDF

Analysis of Water-quality Improvement Efficiency of Constructed Wetland Using NPS-WET Model (NPS-WET 모형을 이용한 인공습지의 수질정화효과 분석)

  • Rhee, Han-Pil;Jung, Kwang-Wook;Lee, Bok-Soo;Ham, Jong-Hwa;Son, Yeong-Kwon
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.320-331
    • /
    • 2012
  • A combination system of catch canal and constructed wetland was designed and suggested to improve water quality in gagricultural region of lower Dong-jin river basin. In order to evaluate an water quality improvement efficiency of the designed combination system, the NPS-WET model was applied in this study. Simulation result of the NPS-WET shown that the nutrient load removal rate of constructed wetland was BOD, T-N, T-P and SS was 30.7~39.0%, 46~60%, 40.7~57.0% and 68.2~74.7%, respectively. Nutrients reduction of constructed wetland was higher in growing season than winter season because vital activity of microorganism, macrophyte and algae was augmented with high air and water temperature. Effluents from constructed wetland can affect water-quality of catch canal drains, especially, water-quality on junction point to Dong-jin river. Water-quality improvement in low-flowed catch canal (Un-san) was more significant than in high-flowed catch canal (Won-pyeong). In conclusion, a feasible design of constructed wetland is necessary to treat large quantity of receiving water. The NPS-WET is useful tool for assessing water-quality improvement efficiency using constructed wetland.

Analysis of 4-year experimental data from water quality improvement of inflow stream in estuary using wetland (인공습지를 이용한 하구담수호 유입하천수의 4년간 실험결과 분석)

  • Kim, Hyung-Chul;Yoon, Chun-Gyeong;Han, Jung-Yoon;Lee, Sae-Bom;Shin, Hyun-Bhum
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.557-562
    • /
    • 2005
  • The field scale experiment was performed to examine the effect of plant coverage on the constructed wetland performance and recommend the optimum development and management of macrophyte communities. Four sets(each set of 0.88ha) of wetland (0.8ha) and pond(0.08ha) systems were used. Water flowing into the Seokmoon estuarine reservoir from the Dangjin stream was pumped into wetland system. Water depth was maintained at $0.3{\sim}0.5m$ and hydraulic retention time was managed to about $2{\sim}5$ days; emergent plants were allowed to grow in the wetlands. After three growing seasons of the construction of wetlands, plant coverage was about 95%, even with no plantation, from bare soil surfaces at the initial stage. Dead vegetation affected nitrogen removal during winter because it is a source of organic carbon which is an essential parameter in denitrification. Biomass harvesting is not a realistic management option for most constructed wetland systems because it could only slightly increase the removal rate and provide a minor nitrogen removal pathway due to lack of organic carbon.

  • PDF

The effect of water turnover time on decomposition of wild rice (Zizania latifolia) and nutrient dynamics in an artificial wetland system

  • Lee, Bo Eun;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.37 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • The effect of different turnover time of water on the decomposition of emergent macrophyte litter (Zizania latifolia Griseb.) was investigated using a microcosm experiment. Microcosm treatment represented different turnover time of water; 1, 2, 4 and 8 weeks. The litterbags from each treatment were retrieved every 2 weeks until the 8th week and the water simultaneously sampled with the litterbag. The dry weight and the content of major cations in the litter, and the content of available N, P, and major cations in the water were analyzed. Dry weight loss after 8 weeks indicated the lower decay rates under the condition of short turnover time of water. Major cations from the litter and the water showed that the leached amounts of K and Mg from the litter were highest in the 2nd week and dramatically decreased from the 4th week. The dynamics of available nitrogen and phosphorus in the water showed that as the water turnover time was getting longer, the amounts of available nitrogen and phosphorus remained higher. These results suggest that wetlands with longer turnover time of water could maintain the increased nitrogen and phosphorus and no outflow of the nutrients could cause eutrophication problem.

Production of Biobutanol by Clostridium beijerinckii from Water Hyacinth (부레옥잠을 이용한 Clostridium beijerinckii의 Biobutanol 생산)

  • Park, Bong-Je;Park, Hye Min;Yun, Hyun Shik
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.79-84
    • /
    • 2016
  • Biofuel has been considered as promising renewable energy to solve various problems that result from increasing usage of fossil fuels since the early 20th century. In terms of chemical and physical properties as fuel, biobutanol has more merits than bioethanol. It could replace gasoline for transportation and industrial demand is increasing significantly. Production of butanol can be achieved by chemical synthesis or by microbial fermentation. The water hyacinth, an aquatic macrophyte, originated from tropical South America but is currently distributed all over the world. Water hyacinth has excellent water purification capacity and it can be utilized as animal feed, organic fertilizer, and biomass feedstock. However, it can cause problems in the rivers and lakes due to its rapid growth and dense mats formation. In this study, the potential of water hyacinth was evaluated as a lignocellulosic biomass feedstock in biobutanol fermentation by using Clostridium beijerinckii. Water hyacinth was converted to water hyacinth hydrolysate medium through pretreatment and saccharification. It was found that productivity of water hyacinth hydrolysate medium on biobutanol production was comparable to general medium.

A Study on the Removal of Pollutants from Wastewater by Aquatic Macrophytes (수생식물에 의한 폐수의 오염물질제거에 관한 연구)

  • Cho, Hae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.941-946
    • /
    • 2012
  • Macrophyte plays an important role in purification of wastewater. They have capacity to improve the water quality by absorbing nutrients, with their effective root system. In this study, removal of nutrient as well as organic matter was observed by some important macrophytes i.e. Pistia stratoites, Hydrocharis dubia and Salvinia sp. indepe ndently as well as in mixed culture under the laboratory condition. The highest total nitrogen removal was observed for Pistia stratoites (86.47%) in monoculture and Salvinia sp. + P. stratoites (76.11%) in mixed culture system. Corresponding figures for total phosphorous were observed for P. stratoites (75.60%) in monoculture and Salvinia sp. + P. stratoites (71.11%) in mixed culture system. Similar result was observed for ammonia removal in both systems. Additionally, P. stratoites showed the highest removal of organic matter, in monoculture system (68.46%) where as Salvinia sp. + P. stratoites showed the highest removal of organic matter in mixed culture system (82.73 %).