• Title/Summary/Keyword: macromolecular component

Search Result 32, Processing Time 0.019 seconds

Component dynamics in miscible polymer blends: A review of recent findings

  • Watanabe, Hiroshi;Urakawa, Osamu
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.235-244
    • /
    • 2009
  • Miscible polymer blends still have heterogeneity in their component chain concentration in the segmental length scale because of the chain connectivity (that results in the self-concentration of the segments of respective chains) as well as the dynamic fluctuation over various length scales. As a result, the blend components feel different dynamic environments to exhibit different temperature dependence in their segmental relaxation rates. This type of dynamic heterogeneity often results in a broad glass transition (sometimes seen as two separate transitions), a broad distribution of the local (segmental) relaxation modes, and the thermo-rheological complexity of this distribution. Furthermore, the dynamic heterogeneity also affects the global dynamics in the miscible blends if the component chains therein have a large dynamic asymmetry. Thus, the superficially simple miscible blends exhibit interesting dynamic behavior. This article gives a brief summary of the features of the segmental and global dynamics in those blends.

Preparation and Properties of Modified PHEMA Hydrogels Containing Thermo-responsive Pluronic Component

  • Hong, Kwang-Hyun;Jeon, Young-Sil;Kim, Ji-Heung
    • Macromolecular Research
    • /
    • v.17 no.1
    • /
    • pp.26-30
    • /
    • 2009
  • To modify and strengthen the properties of PHEMA hydrogel, composite hydrogels containing varying amounts of a Pluronic (PEO-PPO-PEO) component were synthesized by bulk polymerization of HEMA in the presence of Pluronic dimethacrylate under mild photo initiating conditions. The effects of the Pluronic component on gel properties were investigated by measuring the degree of swelling with its temperature responsive behavior, the mechanical properties, and the morphology of the composite hydrogels. With increased Pluronic content, the modified PHEMA hydrogels exhibited an increase in the degree of swelling, and the swelling showed an enhanced thermo-responsive behavior that was completely reversible. In addition, improved mechanical strength and the development of a microporous gel morphology were observed in hydrogels containing Pluronic.

Unstable Inverted Phases of Di- and Tri-block Copolymers on Solution-Casting Films

  • Sun Dachun;Huang Lei;Liang Haojun
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.152-155
    • /
    • 2005
  • A dynamic density functional theory is presented for the observation of the phase revolutions of a solution-casting film of di- and tri-block copolymers under solvent evaporation conditions. With the evaporation of the solvent, the inverted phases, the minor part of the component becomes the continuous phase at the higher solvent evaporation rate, as observed in this experiment. Further simulation revealed that these inverted phases are converted into the normal phase and the major part of the component becomes the continuous phase, implying that the inverted phases observed in this experiment are unstable.

Stress-Strain Behavior of the Electrospun Thermoplastic Polyurethane Elastomer Fiber Mats

  • Lee Keunhyung;Lee Bongseok;Kim Chihun;Kim Hakyong;Kim Kwanwoo;Nah Changwoon
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.441-445
    • /
    • 2005
  • Thermoplastic polyurethane elastomer (TPUe) fiber mats were successfully fabricated by electrospinning method. The TPUe fiber mats were subjected to a series of cycling tensile tests to determine the mechanical behavior. The electrospun TPUe fiber mats showed non-linear elastic and inelastic characteristics which may be due to slippage of crossed fiber (non-bonded or physical bonded structure) and breakage of the electro spun fibers at junctions (point-bonded or chemical bonding structure). The scanning electron microscopy (SEM) images demonstrated that the point-bonded structures of fiber mats played an important role in the load-bearing component as determined in loading-unloading component tests, which can be considered to have a force of restitution.

Anti-Angiogenic Activity of Gecko Aqueous Extracts and its Macromolecular Components in CAM and HUVE-12 Cells

  • Tang, Zhen;Huang, Shu-Qiong;Liu, Jian-Ting;Jiang, Gui-Xiang;Wang, Chun-Mei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.2081-2086
    • /
    • 2015
  • Gecko is a kind of traditional Chinese medicine with remarkable antineoplastic activity. However, undefined mechanisms and ambiguity regarding active ingredients limit new drug development from gecko. This study was conducted to assess anti-angiogenic properties of the aqueous extracts of fresh gecko (AG) or macromolecular components separated from AG (M-AG). An enzyme-linked immunosorbent assay (ELISA) approach was applied to detect the vascular endothelial growth factor (VEGF) secretion of the tumor cells treated with AG or M-AG. The effect of AG or M-AG on vascular endothelial cell proliferation and migratory ability was analyzed by tetrazolium dye colorimetric method, transwell and wound-healing assays. Chick embryo chorioallantoic membrane (CAM) assays were used to ensure the anti-angiogenic activity of M-AG in vivo. The results showed that AG or M-AG inhibited the VEGF secretion of tumor cells, the relative inhibition rates of AG and M-AG being 27.2% and 53.2% respectively at a concentration of $20{\mu}L/mL$. AG and M-AG inhibited the vascular endothelial (VE) cell proliferation with IC50 values of $11.5{\pm}0.5{\mu}L/mL$ and $12.9{\pm}0.4{\mu}L/mL$ respectively. The VE cell migration potential was inhibited significantly (p<0.01) by the AG (${\geq}24{\mu}L/mL$) or M-AG (${\geq}12\mu}L/mL$) treatment. In vivo, neovascularization of CAM treated with M-AG was inhibited significantly (p<0.05) at a concentration of ${\geq}0.4{\mu}L/mL$. This study provided evidence that anti-angiogenesis is one of the anti-tumor mechanisms of AG and M-AG, with the latter as a promising active component.

Preparation and Characterization of Surface Energy of BPDA-BAPP Polyimide

  • Kim, Kyung-Hoe;Kim, Yong-Gwon;Kwon, Young-Hwan
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.388-396
    • /
    • 2009
  • The surface properties (water sorption and repellency, adhesion) are closely related to the surface tension of polymer solids. The critical surface tension (${\gamma}_c$) and surface tension (${\gamma}_s$) of a polymer solid were estimated by the contact angle method by our quantitative imaging system. BPDA (3,3',4,4'-biphenyl tetracarboxylic dianhydride)-BAPP (1,3-Bis(4-aminophenoxy) propane) polyimide was successfully synthesized. The ${\gamma}_c$ values were analyzed by a Zisman plot, a Young-$Dupr\acute{e}$-Good-Girifalco plot, and a log ($1+cos{\theta}$) vs log ${\gamma}_L$ plot. The ${\gamma}_s$ value of BPDA-BAPE polyimide was evaluated using the geometric mean equation and our multiple regression analysis. The calculated values of ${{\gamma}_s^d$ (a dispersion component), ${{\gamma}_s^p$ (a polar component), ${{\gamma}_s^h$ (a hydrogen bonding component), and ${\gamma}_s$ were 30.79, 9.32, 0.20, and 40.31 $mN{\cdot}m^{-1}$, respectively. The ${\gamma}_s$ of BPDA-BAPP polyimide containing both a methylene group and an ether group was larger than that of the polyimide containing only a methylene group.

A One-Component Negative Photoresist Based on an Epoxy Terpolymer Containing Oxime-Urethane Groups as a Photobase Generator

  • Chae, Kyu-Ho;Park, Jin-Hee
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.352-358
    • /
    • 2004
  • For their application as one-component photoresists, we prepared epoxy terpolymers containing oxime-urethane and benzophenone groups by the radical polymerization of glycidyl methacrylate (GMA), metha-cryloxyethyl benzophenoneoxime urethane (MBU), and N-(4-benzoyl)phenylmaleimide (BPMI). The terpolymer composition was optimized to provide the most photosensitive photoresist. The photo-decomposition reaction of the oxime-urethane groups in the terpolymer was monitored by UV absorption spectroscopy, and the photo-crosslinking reaction of the epoxy terpolymer was observed by measuring the normalized thickness. The photosensitivity of the epoxy terpolymer increased as the amount of BPMI and MBU units increased up to 16 and 24 mol%, respectively. Among the terpolymers we prepared, terpolymer T-II(contents of GMA, MBU, BPMI are 75, 19, 6.1 mole%, respectively) exhibited the highest photosensitivity ( $D_{c}$ $^{0.5}$ = 430 mJ/$\textrm{cm}^2$) and had a moderate contrast (${\gamma}$$^{p}$ = 1.23). Negative-tone micropatterns having a line width of ca. 10 ${\mu}{\textrm}{m}$ were obtained by developing the system with chloroform.m.

Ultrashort Echo Time MRI (UTE-MRI) Quantifications of Cortical Bone Varied Significantly at Body Temperature Compared with Room Temperature

  • Jerban, Saeed;Szeverenyi, Nikolaus;Ma, Yajun;Guo, Tan;Namiranian, Behnam;To, Sarah;Jang, Hyungseok;Chang, Eric Y.;Du, Jiang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.202-209
    • /
    • 2019
  • Purpose: To investigate the temperature-based differences of cortical bone ultrashort echo time MRI (UTE-MRI) biomarkers between body and room temperatures. Investigations of ex vivo UTE-MRI techniques were performed mostly at room temperature however, it is noted that the MRI properties of cortical bone may differ in vivo due to the higher temperature which exists as a condition in the live body. Materials and Methods: Cortical bone specimens from fourteen donors ($63{\pm}21$ years old, 6 females and 8 males) were scanned on a 3T clinical scanner at body and room temperatures to perform T1, $T2^*$, inversion recovery UTE (IR-UTE) $T2^*$ measurements, and two-pool magnetization transfer (MT) modeling. Results: Single-component $T2^*$, $IR-T2^*$, short and long component $T2^*s$ from bi-component analysis, and T1 showed significantly higher values while the noted macromolecular fraction (MMF) from MT modeling showed significantly lower values at body temperature, as compared with room temperature. However, it is noted that the short component fraction (Frac1) showed higher values at body temperature. Conclusion: This study highlights the need for careful consideration of the temperature effects on MRI measurements, before extending a conclusion from ex vivo studies on cortical bone specimens to clinical in vivo studies. It is noted that the increased relaxation times at higher temperature was most likely due to an increased molecular motion. The T1 increase for the studied human bone specimens was noted as being significantly higher than the previously reported values for bovine cortical bone. The prevailing discipline notes that the increased relaxation times of the bound water likely resulted in a lower signal loss during data acquisition, which led to the incidence of a higher Frac1 at body temperature.

Abscisic Acid Binding to Extracts from Normal and Viviparous-1 Mutant Aleurone Layers of Zea mays L.

  • Bai, Dong-Gyu
    • Journal of Plant Biology
    • /
    • v.37 no.2
    • /
    • pp.151-158
    • /
    • 1994
  • Aleurone layers of normal and vp1 mutant maize kernels were extracted and centrifuged at 100,000g to yield a cytosol fraction. Binding of [3H]ABA cis, trans (+)ABA to a soluble macromolecular components present in the cytosol was demonstrated by Sephadex chromatography and non-denaturing PAGE. The binding component was of high molecular weight and seems to be an aggregate of proteins. A rapid DEAE-cellulose filter method for assaying bound [3H]ABA to a soluble protein was adapted. Binding assays were performed with cytosol that had been preheated or incubated with several enzymes, indicating that heat and protease treatments disrupted the binding. This suggested that binding occurred to proteins. Some properties of the ABA binding proteins were described. The [3H]ABA binding were reduced dramatically when unlabeled ABA was added as a competitor, suggesting a specific binding of [3H]ABA. Gel filtration profiles and autoradiogram of [3H]ABA binding showed no difference in the binding components of Vp1 and vp1/vp1 mutant cytosol, indicating that Vp1 protein is not a sole ABA binding protein.

  • PDF