• 제목/요약/키워드: macro-element approach

검색결과 33건 처리시간 0.018초

Non-linear modeling of masonry churches through a discrete macro-element approach

  • Panto, Bartolomeo;Giresini, Linda;Sassu, Mauro;Calio, Ivo
    • Earthquakes and Structures
    • /
    • 제12권2호
    • /
    • pp.223-236
    • /
    • 2017
  • Seismic assessment and rehabilitation of Monumental Buildings constitute an important issue in many regions around the world to preserve cultural heritage. On the contrary, many recent earthquakes have demonstrated the high vulnerability of this type of structures. The high nonlinear masonry behaviour requires ad hoc refined finite element numerical models, whose complexity and computational costs are generally unsuitable for practical applications. For these reasons, several authors proposed simplified numerical strategies to be used in engineering practice. However, most of these alternative methods are oversimplified being based on the assumption of in-plane behaviour of masonry walls. Moreover, they cannot be used for modelling the monumental structures for which the interaction between plane and out-plane behaviour governs the structural response. Recently, an innovative discrete-modelling approach for the simulation of both in-plane and out of-plane response of masonry structures was proposed and applied to study several typologies of historic structures. In this paper the latter model is applied with reference to a real case study, and numerically compared with an advanced finite element modelling. The method is applied to the St.Venerio church in Reggiolo (Italy), damaged during the 2012 Emilia-Romagna earthquake and numerically investigated in the literature.

Seismic response and damage development analyses of an RC structural wall building using macro-element

  • Hemsas, Miloud;Elachachi, Sidi-Mohammed;Breysse, Denys
    • Structural Engineering and Mechanics
    • /
    • 제51권3호
    • /
    • pp.447-470
    • /
    • 2014
  • Numerical simulation of the non-linear behavior of (RC) structural walls subjected to severe earthquake ground motions requires a reliable modeling approach that includes important material characteristics and behavioral response features. The objective of this paper is to optimize a simplified method for the assessment of the seismic response and damage development analyses of an RC structural wall building using macro-element model. The first stage of this study investigates effectiveness and ability of the macro-element model in predicting the flexural nonlinear response of the specimen based on previous experimental test results conducted in UCLA. The sensitivity of the predicted wall responses to changes in model parameters is also assessed. The macro-element model is next used to examine the dynamic behavior of the structural wall building-all the way from elastic behavior to global instability, by applying an approximate Incremental Dynamic Analysis (IDA), based on Uncoupled Modal Response History Analysis (UMRHA), setting up nonlinear single degree of freedom systems. Finally, the identification of the global stiffness decrease as a function of a damage variable is carried out by means of this simplified methodology. Responses are compared at various locations on the structural wall by conducting static and dynamic pushover analyses for accurate estimation of seismic performance of the structure using macro-element model. Results obtained with the numerical model for rectangular wall cross sections compare favorably with experimental responses for flexural capacity, stiffness, and deformability. Overall, the model is qualified for safety assessment and design of earthquake resistant structures with structural walls.

A composite crack model for concrete based on meshless method

  • Lu, Xin-Zheng;Jiang, Jian-Jing;Ye, Lie-Ping
    • Structural Engineering and Mechanics
    • /
    • 제23권3호
    • /
    • pp.217-232
    • /
    • 2006
  • A crack model for the fracture in concrete based on meshless method is proposed in this paper. The cracks in concrete are classified into micro-cracks or macro-cracks respectively according to their widths, and different numerical approaches are adopted for them. The micro-cracks are represented with smeared crack approach whilst the macro-cracks are represented with discrete cracks that are made up with additional nodes and boundaries. The widely used meshless method, Element-free Galerkin method, is adopted instead of finite element method to model the concrete, so that the discrete crack approach is easier to be implemented with the convenience of arranging node distribution in the meshless method. Rotating-Crack-Model is proved to be preferred over Fixed-Crack-Model for the smeared cracks of this composite crack model due to its better performance on mesh bias. Numerical examples show that this composite crack model can take advantage of the positive characteristics in the smeared and discrete approaches, and overcome some of their disadvantages.

Finite element modeling of reinforced and prestressed concrete panels under far-field blast loads using a smeared crack approach

  • Andac Lulec;Vahid Sadeghian;Frank J. Vecchio
    • Computers and Concrete
    • /
    • 제33권6호
    • /
    • pp.725-738
    • /
    • 2024
  • This study presents a macro-modeling procedure for nonlinear finite element analysis of reinforced and prestressed concrete panels under blast loading. The analysis procedure treats cracked concrete as an orthotropic material based on a smeared rotating crack model within the context of total-load secant stiffness-based formulation. A direct time integration method compatible with the analysis formulation is adapted to solve the dynamic equation of motion. Considerations are made to account for strain rate effects. The analysis procedure is verified by modeling 14 blast tests from various sources reported in the literature including a blast simulation contest. The analysis results are compared against those obtained from experiments, simplified single-degree-of-freedom (SDOF) methods, and sophisticated hydrocodes. It is demonstrated that the smeared crack macro-modeling approach is a viable alternative analysis procedure that gives more information about the structural behavior than SDOF methods, but does not require detailed micro-modeling and extensive material characterization typically needed with hydrocodes.

A systematic approach to the calibration of micro-parameters for the flat-jointed bonded particle model

  • Zhou, Changtai;Xu, Chaoshui;Karakus, Murat;Shen, Jiayi
    • Geomechanics and Engineering
    • /
    • 제16권5호
    • /
    • pp.471-482
    • /
    • 2018
  • A flat-jointed bonded-particle model (BPM) has been proved to be an effective tool for simulating mechanical behaviours of intact rocks. However, the tedious and time-consuming calibration procedure imposes restrictions on its widespread application. In this study, a systematic approach is proposed for simplifying the calibration procedure. The initial relationships between the microscopic, constitutive parameters and macro-mechanical rock properties are firstly determined through dimensionless analysis. Then, sensitivity analyses and regression analyses are conducted to quantify the relationships, using results from numerical simulations. Finally, four examples are used to demonstrate the effectiveness and robustness of the proposed systematic approach for the calibration procedure of BPMs.

FRACOD를 이용한 취성 암석의 손상 및 파괴에 대한 경계요소 해석 (A Boundary Element Analysis for Damage and Failure Process of Brittle Rock using ERACOD)

  • 이희석
    • 터널과지하공간
    • /
    • 제14권4호
    • /
    • pp.248-260
    • /
    • 2004
  • 응력 증가에 의한 취성 암석의 손상은 미세균열의 개시로부터 시작하여 각 개별 균열들의 전파 및 결합에 의해 거시적인 파괴면을 발생시킨다. 전통적으로 암반의 손상 및 파괴현상을 설명하기 위해 거시적인 파괴 기준이나 탄소성 모델과 같은 연속체적인 접근법이 주류를 이루어왔다. 하지만 개별적인 균열들의 개시와 전락 과정을 명시적으로 고려할 수 있다면 현상론적인 관점에서 보다 실제에 가까운 암석 손상 및 파괴 과정을 재현할 수 있을 것이다. 본 연구에서는 암석의 균열 진전 모델링을 위해 개발된 경계요소 코드인 FRACOD를 이용하여 암석의 손상 및 파괴 과정을 모사한 결과를 제시한다. 수치일축압축시험을 통해 개발된 모델의 적정성을 검증하고 암반의 치수효과를 고려한 현실적인 암석 파괴 과정을 재현하였다. 또한 이러한 접근법의 적용 사례로서, 실제 굴착이 진행중인 심부 수갱 암반 주변에서 심도와 암반 특성에 따라 균열 진전과 이에 따른 암반 손상의 범위를 예측한 결과를 제시하였다. 이 접근법은 취성도가 큰 암반에서 발생하는 안정성 문제에 대한 공학적인 해법을 찾는데 기여를 할 수 있을 것으로 기대된다.

기호예산을 이용한 공간기구의 해석 (Analysis of Spatial Mechanism Using Symbolic Computation)

  • 이동민;윤용산
    • 대한기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.1509-1517
    • /
    • 1993
  • 본 연구에서는 3차원 운동을 하는 다물체 기구가 물체 수와 조인트 연결상태 만 주어진 상태에서 구성상태에 따라 절점 좌표계를 이용하여 모델링하고 MACSYMA를 써서 복잡단조로운 대수 계산을 하여 모든 운동학적 정보를 얻어내며 수치계산이 필요 하면 별도의 프로그램을 이용 수치해석을 하는 과정을 밟는다.

소형부품의 사각 컵 드로잉 성형 해석에 관한 실험적 연구 (An Experimental Approach and Finite Element Analysis on Rectangular Cup Drawing Process of Milli-Component Forming)

  • 구태완;강범수
    • 소성∙가공
    • /
    • 제10권6호
    • /
    • pp.471-477
    • /
    • 2001
  • Milli-structure components are classified as a component group whose size is between macro and micro scales, that is, about smaller than 20mm and larger than 1mm. The forming of these components has a typical phenomenon of bulk deformation with thin sheets because of the forming size. In this study, milli-structure rectangular cup drawing is analyzed and measured using the finite element method and experiments. Special containers or cases of cellular phone vibrator to save installation space are produced by rectangular-shaped drawing. A systematic approach is established for the design and the experiment of the forming processes for rectangular milli-structure cases. To verify the simulation results, the experimental investigations were also carried out on a real industrial product. The numerical analysis by FEM shows good agreement with the experimental results in view of the deformation shape of the product.

  • PDF

Performance analysis of a detailed FE modelling strategy to simulate the behaviour of masonry-infilled RC frames under cyclic loading

  • Mohamed, Hossameldeen M.;Romao, Xavier
    • Earthquakes and Structures
    • /
    • 제14권6호
    • /
    • pp.551-565
    • /
    • 2018
  • Experimental testing is considered the most realistic approach to obtain a detailed representation of the nonlinear behaviour of masonry-infilled reinforced concrete (RC) structures. Among other applications, these tests can be used to calibrate the properties of numerical models such as simplified macro-models (e.g., strut-type models) representing the masonry infill behaviour. Since the significant cost of experimental tests limits their widespread use, alternative approaches need to be established to obtain adequate data to validate the referred simplified models. The proposed paper introduces a detailed finite element modelling strategy that can be used as an alternative to experimental tests to represent the behaviour of masonry-infilled RC frames under earthquake loading. Several examples of RC infilled frames with different infill configurations and properties subjected to cyclic loading are analysed using the proposed modelling approach. The comparison between numerical and experimental results shows that the numerical models capture the overall nonlinear behaviour of the physical specimens with adequate accuracy, predicting their monotonic stiffness, strength and several failure mechanisms.

유한요소법을 이용한 다결정 고체의 복합스케일 모델링 (Strongly-coupled Finite Element Method Approach to Multi-scale Modelingof Polycrystalline Solids)

  • 한동석;폴 도슨
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.531-534
    • /
    • 2006
  • A multi-scale (macro-micro) finite element framework for analysis of polycrystalline solids is suggested. The proposed frame work is strongly-coupled in a sense that the two scale calculation is performed at the same time. The issue of averaging micro-scale material stress and stiffness is addressed and a strategy is proposed. The proposed framework is implemented and applied to two examples having different geometries and loading modes. It is concluded that the proposed multi-scale framework can be used for more detailed and accurate analysis compared with the single-scale finite element analysis.

  • PDF