• Title/Summary/Keyword: macro cell

Search Result 204, Processing Time 0.029 seconds

Proposed Guidelines for Selection of Methods for Erosion-corrosion testing in Flowing Liquids

  • Matsumura, Masanobu
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.291-296
    • /
    • 2007
  • The corrosion of metals and alloys in flowing liquids can be classified into uniform corrosion and localized corrosion which may be categorized as follows. (1) Localized corrosion of the erosion-corrosion type: the protective oxide layer is assumed to be removed from the metal surface by shear stress or turbulence of the fluid flow. A macro-cell may be defined as a situation in which the bare surface is the macro-anode and the other surface covered with the oxide layer is the macro-cathode. (2) Localized corrosion of the differential flow-velocity corrosion type: at a location of lower fluid velocity, a thin and coarse oxide layer with poor protective qualities may be produced because of an insufficient supply of oxygen. A macro-cell may be defined as a situation in which this surface is the macro-anode and the other surface covered with a dense and stable oxide layer is the macro-cathode. (3) Localized corrosion of the active/passive-cell type: on a metal surface a macro-cell may be defined as a situation in which a part of it is in a passivation state and another in an active dissolution state. This situation may arise from differences in temperature as well as in the supply of the dissolved oxygen. Compared to uniform corrosion, localized corrosion tends to involve a higher wall thinning rate (corrosion rate) due to the macro-cell current as well as to the ratio of the surface area of the macro-anode to that of the macro-cathode, which may be rationalized using potential vs. current density diagrams. The three types of localized corrosion described above can be reproduced in a Jet-in-slit test by changing the flow direction of the test liquid and arranging environmental conditions in an appropriate manner.

Comparison of Mobility Management methods Handover based and Non-Handover based (Handover 기반과 Non-Handover 기반의 Mobility Management 기법의 비교)

  • Woo, Choong-Chae;Ju, Hyung-Sik
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.81-85
    • /
    • 2012
  • In this paper, we analyze the effect of mobility management method to the data rate of moving users when pico-cell which uses the same frequency bandwidth as that of macro-cell is overlaid over macro-cell. From this analysis, we show that the data rate which is available to the moving user depends on the method of mobility management and relative location of the overlaid pico-cell over macro-cell in the network.

HSPICE Macro-Model and Midpoint-Reference Generation Circuits for MRAM (MRAM용 HSPICE 마크로 모델과 midpoint reference 발생 회로에 관한 연구)

  • 이승연;이승준;신형순
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.105-113
    • /
    • 2004
  • MRAM uses magneto-resistance material as a storage element, which stores cell data as a polarization of spin in a free magnetic layer. This magneto-resistance material has hysteresis, asteroid curve at the thermal variation, and R-V characteristics for switching the data. Therefore, a macro-model which can reproduce these characteristics is required for MRAM simulation. We propose a macro-model of TMR (Tunneling Magneto Resistance) that can reproduce all of these characteristics on HSPICE. Also we propose a novel sensing scheme, which generates reference resistance having the medium value, ( $R_{H}$+ $R_{L}$)/2, for a wide range of applied voltage and present simulation results based on the HSPICE macro-model of MTJ that we have developed.d.d.

A CMOS Macro-Model for MRAM cell based on 2T2R Structure (2-Transistor와 2-Resister 구조의 MRAM cell을 위한 CMOS Macro-Model)

  • 조충현;고주현;김대정;민경식;김동명
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.863-866
    • /
    • 2003
  • Recently, there has been growing interests in the magneto-resistive random access memory (MRAM) because of its great potential as a future nonvolatile memory. In this paper, a CMOS macro-model for MRAM cell based on a twin cell structure is proposed. The READ and WRITE operations of the MTJ cell can be emulated by adopting data latch and switch blocks. The behavior of the circuit is confirmed by HSPICE simulations in a 0.35-${\mu}{\textrm}{m}$ CMOS process. We expect the macro model can be utilized to develope the core architecture and the peripheral circuitry. It can also be used for the characterization and the direction of the real MTJ cells.

  • PDF

Load Balancing Scheme for Heterogeneous Cellular Networks Using e-ICIC (eICIC 가 적용된 이종 셀룰러 망을 위한 부하 분산 기법)

  • Hong, Myung-Hoon;Park, Seung-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.280-292
    • /
    • 2014
  • Recently, heterogeneous networks consisting of small-cells on top of traditional macro-cellular network has attracted much attention, because traditional macro-cellular network is not suitable to support more demanding mobile data traffic due to its limitation of spatial reuse. However, due to the transmit power difference between macro- and small-cells, most users are associated with macro-cells rather than small-cells. To solve this problem, enhanced inter-cell interference coordination (eICIC) has been introduced. Particularly, in eICIC, the small-cell coverage is forcibly expanded to associate more users with small-cells. Then, to avoid cross-tier interference from macro-cells, these users are allowed to receive the data during almost blank subframe (ABS) in which macro-cells almost remain silent. However, this approach is not sufficient to balance the load between macro- and small-cells because it only expands the small-cell coverage. In this paper, we propose a load balance scheme improving proportional fairness for heterogeneous networks employing eICIC. In particular, the proposed scheme combines the greedy-based user association and the ABS rate determination in a recursive manner to perform the load balance.

Performance Analysis of Mobile WiMAX MMR System with Vertical Handover (수직 핸드오버를 통한 Mobile WiMAX MMR system의 성능분석)

  • Bae, Mun-Han;Kim, Young-Il;Kim, Suk-Chan;Lee, Dong-Heon;Otgonbayar, B.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11A
    • /
    • pp.844-851
    • /
    • 2009
  • Handover is needed in multi-hop relay systems to support mobility. The main purpose of handover is to provide the continuous connection when a MS migrates from the air-interface of one BS to another air-interface provided by another BS. Especially the handover between different systems is essential to next generation network. Vertical Handover technology in Mobile WiMAX MMR system is very useful for operators to introduce to Mobile WiMAX system in an overlaid cell environment. This technology will be applied to technology which hands MRS(Mobile Relay Station) over to different systems for system performance enhancement in Ubiquitous environment overlaid between Micro ce11(Frequency 1,FA1) and Macro cell(Frequency 2,FA2). In this paper, FA1 and FA2 are used in order to perform Vertical Handover of MRS(Mobile Relay Station) according to suggested conditions. interferences from neighboring BS or other sectors of 6 macro cells surrounding center Macro cell are analyzed and throughputs are measured according to suggested conditions.

Reverse link analysis of CDMA cellular systems with mixed cell sizes (혼합된 셀 크기를 갖는 CDMA 셀룰라 시스템에서 역방향 링크 용량 분석)

  • 전형구;신성문;권수근;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4A
    • /
    • pp.481-488
    • /
    • 2000
  • The demands for mobile communication service are growing rapidly. In heavily populated areas, cell split is unavoidable to increase the capacity of the cellular system. Cell splitting makes a cellular system to have mixed cell sizes. For cell planning, it is necessary to analyze the reverse link capacity of a CDMA cellular system with mixed cell sizes. In this paper, we propose a method to calculate the reverse link capacity of a CDMA cellular system with mixed cell sizes. When a macro cell is split into three micro cells, as an example, we calculate the reverse link capacities for the three micro cells and the neighboring macro cells. The results show that as the radius of a micro cell decreases, the reverse link capacity of the micro cell increases, while those of the neighboring macro cells decrease.

  • PDF

CMOS Macro Model for Toggling MRAM Cell and Design of Core Architecture (Toggling MRAM cell을 위한 CMOS Macro Model과 Core Architecture 설계)

  • Go, Soon-Bog;Song, Ha-Sun;Kim, Bum-Su;Kim, Dea-Jeong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.525-526
    • /
    • 2006
  • A macro model for Savtchenko switching mode MRAM (toggling MRAM) cells which can be utilized to develop the core architecture and the peripheral circuitry is proposed, and a writing scheme suitable to the toggling characteristic is developed. The sensing and writing operations of the toggling MRAM adopting the macro model are verified by Spectre simulations.

  • PDF

The analysis of system by the ratio of power at micro-cell and macro-cell (마크로셀과 마이크로셀에서 수신하는 전력의 비에 따른 시스템 분석)

  • Seong, Hong-Seok;Lim, Seung-Ha;Won, Young-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1235-1240
    • /
    • 2005
  • This paper supposes the perfect power control at micro-cell and macro-cell. Under this supposition, we calculate SIR and decide the call admission by SIR. When we calculate SIR, we use the ratio of the power received the base station of micro-cell and the power received the base station of macro-cell. We analysis the performance of the system by the computer simulation while changing the ratio of power.

  • PDF

Coordinated Multi-Point Communications with Channel Selection for In-building Small-cell Networks (건물 내 스몰셀 네트워크에서 채널 선택 기반 다중점 협력통신)

  • Ban, Ilhak;Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.9-15
    • /
    • 2022
  • This paper proposes a coordinated multi-point communication (CoMP) method with channel selection to improve performance of a macro user equipment (MUE) in a dense small-cell network environment in a building located within coverage of a macro base station (MBS). In the proposed CoMP method, in order to improve the performance of the MUE located in the building, A small-cell base station (SBS) selects a channel with lower interference to the neighboring MUE and transmits appropriate signals to the MUE requiring CoMP. Simulation results show that the proposed CoMP method improves the performance of the MUE by up to 164% and 51%, respectivley, compared to a random channel allocation based traditional SBS network and CoMP method.