• Title/Summary/Keyword: machining tools

Search Result 608, Processing Time 0.025 seconds

Modeling and Measurement of Geometric Errors for Machining Center using On-Machine Measurement System (기상계측 시스템을 이용한 머시닝센터의 기하오차 모델링 및 오차측정)

  • Lee, Jae-Jong;Yang, Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.201-210
    • /
    • 1999
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric and thermal errors of the machine tools. Therefore, a key requirement for improving te machining accuracy and product quality is to reduce the geometric and thermal errors of machine tools. This study models geometric error for error analysis and develops on-machine measurement system by which the volumetric erors are measured. The geometric error is modeled using form shaping function(FSF) which is defined as the mathematical relationship between form shaping motion of machine tool and machined surface. The constant terms included in the error model are found from the measurement results of on-machine measurement system. The developed on-machine measurement system consists of the spherical ball artifact (SBA), the touch probe unit with a star type stylus, the thermal data logger and the personal computer. Experiments, performed with the developed measurement system, show that the system provides a high measuring accuracy, with repeatability of ${\pm}2{\mu}m$ in X, Y and Z directions.

  • PDF

A Study on Heat Generation and Machining Accuracy According to Material of Ultra-precision Machining (초정밀가공의 재질에 따른 발열과 가공정밀도에 관한 연구)

  • Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.63-68
    • /
    • 2018
  • At present, ultra-precision cutting technology has been studied in Korean research institutes, focusing on development of ultra-precision cutting tool technology and ultra-precision control engineering. However, the developed technologies are still far behind advanced countries. It focuses on metals including aluminum, copper and nickel, and nonmetals including plastics, silicone and germanium which require high precision while using a lathe. It is hard to implement high precision by grinding the aforementioned materials. To address the issue, the ultra-precision cutting technology has been developing by using ultra-precision machine tools very accurate and strong, and diamond tools highly abrasion-resistant. To address this issue, this study aims to conduct ultra-precision cutting by using ECTS (Error Compensation Tool Servo) to improve motion precision of elements and components, and compensate for motion errors in real time. An IR camera is used for analyzing cutting accuracy differences depending on the heat generated in diamond tools in cutting to examine the heat generated in cutting to study cutting accuracy depending on generated heat.

A Study on Optimization for Static Characteristics Analysis of Gantry-Type Machining Centers (문형머시닝센터의 구조해석을 통한 최적화에 관한 연구)

  • Yoo, Deck-Sang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.122-128
    • /
    • 2015
  • Recently, as the demand for high efficiency, multi-function machine tools has increased, domestic machine tool industries are investing in research and development for Gantry-Type Machining centers. In this thesis, for the purpose of evaluating machining accuracy and designing a machine tool structure, a simplified model of the main frame is suggested. The results show the general characteristics of the optimum design, and the approach is shown as practicable for the preliminary design analysis and improvement of a conceptual design of a Gantry-Type Machining center. This paper's results are expected to improve the static characteristics of Gantry-Type Machine centers. The three-dimensional finite element models proved that the modeling method might be applied to real machine tool structures.

Variable Feedrate Interpolator for NURBS Curve Considering Material Removal Rate (소재 제거율을 고려한 이송속도 가변형 NURBS 보간기)

  • 마르첸코티혼;고태조;김희술;김정현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.1-8
    • /
    • 2003
  • Conventionally used linear or circular interpolator is undesirable for the precision machining of 3D free-form surface as the following reason: the transmission errors due to the huge number of data, discontinuity of segmentation, unsmooth motion speed. To this regard, modern CNC machine tools are designed with the function of machining arbitrary parametric curves. However, these systems don't consider the adaptive federate, which dominates the quality of the machining process. This paper proposes a NURBS interpolator for the constant material removal rate. That is accomplished by the variable federate using curvature of curve. The curvature-compensated feederate system has important Potential applications in ensuring part accuracy and protecting cutting tool. The simulated result show it can be applicable to the real machining.

Machining Characteristics of Ni-based Heat Resisting Alloy (니켈기 초내열합금의 절삭성에 관한 연구)

  • 강신호;김대은
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.27-35
    • /
    • 1998
  • Ni-based heat resisting alloys are commonly used for high temperature applications such as in aircraft engines and gas turbines. In this work, the machinability of Nimonic 263 alloy is investigated with respect to optimum tool type and cutting conditions for both continuous and discontinuous machining as well as weld region. Among the five types of tools tested, K25 tool experienced the least of damage in machining the weld region. Furthermore, despite their superior high temperature hardness, Si-Al-O-N and CBN tools peformed poorly in machining Nimonic 263.

  • PDF

Development of a Ddistributed Numerical Control System (DNC 시스템 개발)

  • Kim, S.H.;S.W.;S.B.;J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.19-29
    • /
    • 1995
  • The basic technology for a production system represented by design, machining, assembly, and inspection, is machining technology such as CNC machine tools. etc. Direct Numerical Control, that effeciently manages NC programs is developing into Distributed Numerical Control that increases the utilization of the machining cell. It has the ability of monitoring and control, in real time, for CNC and periperial equipment. In this study, we develop a Distributed Numerical Control system that has real time and multitasking operation capability for the machining cell with various CNC's. With the consideration of economy, generalization and extension, the system is interfaced with CNC machine tools and periperial device using RS-485 network and RS-232C communication methods.

  • PDF

Micro-hole Machining Technology for using Micro-tool (마이크로 공구를 이용한 미세구멍가공기술)

  • Heo, N.H.;Lee, S.W.;Choi, H.Z.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1787-1792
    • /
    • 2003
  • Recently with the development of semiconductor technology, the miniaturization of parts and products as well as their high precision is required. In addition, as the national competitiveness is increasingly affected by the development of the micro parts through micro machining technology, the study of the micro machining technology is being conducted in many countries. The goal of this study is to fabricate micro tools under the size of $20{\mu}m$ and to machine micro holes using them. The fabrication is done by grinding and the application of ELID to the grinding wheel. The surface roughness of the micro tools is measured to evaluate the study.

  • PDF

Element Technology of the Ultra-Precision Machine Tools for Machining the Large Surface Micro Features (대면적 미세형상 복합 가공기의 요소기술)

  • Song C.K.;Park C.H.;Hwang J.H.;Kim B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.86-93
    • /
    • 2005
  • In this paper, we discuss the merits of mechanical machining to generate micro features on large surfaces. An overseas technology trend related to the micro machining and dedicated machinery is also presented. We provide an overview of what characteristics the machinery is required to have to generate micro features on large surfaces and what kind of technical barriers need to be overcome to put the technology to practical use.

  • PDF

Machining Time Reduction in Rough Machining of Sculptured Surface using Filleted End Mill (필렛 엔드밀을 이용한 자유곡면 황삭가공 시간단축)

  • 신동혁;김종일;김병희;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.15-19
    • /
    • 1996
  • The cusp height in ball end milling, flat end milling and filleted end milling according to various surface inclination angle was calculated. The calculation result shows that, for each kind of tools, there exists certain range of inclination angle in which cusp height characteristics favorable. From machining time calculation, filleted end mill found to be superior to flat end mill in rough machining of sculptured surface.

  • PDF

Micro Groove Cutting Using Diamond Tools (다이아몬드 공구를 이용한 미세 홈 가공)

  • Choi, Young Jae;Song, Ki Hyeong;Lee, Seok Woo;Choi, Hon Zong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.181-187
    • /
    • 2014
  • Micro patterns are used to maximize the performance and efficiency of the product in many industries such as energy, display, printing, biology, etc. Nowadays, the fabrication technology for micro patterns has been developed in various ways such as photolithography, laser machining, electrical discharge machining and mechanical machining. Recently, mechanical machining the size of smaller than 1 micrometer could be tried, because the technology related to the machining was developed brilliantly. This paper shows the experiments using cutting processes in order to fabricate the micro pattern. Micro patterns of the size of several micrometers were machined by the diamond tools of two different shape, the deformation and generation of burr were investigated.