• Title/Summary/Keyword: machining condition

Search Result 601, Processing Time 0.025 seconds

Optimal Machining Condition of Drying Turning (건조 선삭의 최적 가공 조건)

  • Jang, S.S.;Lee, J.I.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.49-55
    • /
    • 2011
  • Recently, various efforts to make more speedy and precision machine tool to improve productivity and also various efforts to solve environmental problem are going on, so that dry cutting in manufacturing industry, which needs environmental conscious design and development of manufacturing technique, is becoming a very important assignment to solve. Because dry cutting does not use cutting fluid, we need other methods that can be used instead of cutting fluid, which does cooling, lubricating, chip washing, and anti-corrosion. Especially, because turning is a continuous work, the consideration of tool life and surface roughness due to continuous heat and poor lubrication is important. The purposes of this paper are the consideration of how well the compressed air can work instead of cutting fluid, and also the development of the method to select the optimum machining condition by the minimum numbers of experiments through the Taguchi method.

Development of Software for Determining Grinding Wheel Geometry and Setting Condition in End Mill Manufacturing (엔드밀 제작용 연삭숫돌형상과 가공조건 결정을 위한 프로그램 개발)

  • Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.164-174
    • /
    • 1996
  • As tools for machining precision componants, end mills and ball end mills are widely used. For the end mills have longer cylindrical shape comparing dianeter, they are liable to deflect when machining and induce geometrical error and deterioration of surface roughness. To improve the stiffness and the sharpness of the cutting edge of end mill, a software for manufacturing end mills are developed. The program predicts the result of helical flute grinding and the configuration of cuting edge which is located in cylindrical surface. Furthermore to facilitate the manufacturing end mills using CNC grinding machine, the setting condition which satisfy the geometrical requirements like tool rake angle and stiffness are obtained.

  • PDF

A Study on the Characteristics of Residual Stress in the Manufacturing Process of AISI 1536V and AISI A387 (제조공정에 따른 강종별 잔류응력 특성에 관한 연구; AISI 1536V, AISI A387)

  • Hwang, Sung-Kug;Moon, Jeong-Su;Kim, Han Joo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.100-106
    • /
    • 2020
  • This study analyzes the residual stress of AISI 1536V for an engine shaft of the shipbuilding industry and AISI A387 for a reactor shell of the chemical refining industry by the hole drilling method with a strain gauge rosette, which transforms fine mechanical changes into electrical signals. Tensile residual stress is generated in the forging and heat treatment process because specimens are affected by thermal stress and metal transformation stress. In the heat treatment process, the residual stress of AISI A387 is almost 170% the yield strength at 402 MPa. Since during the machining process, variable physical loads are applied to the material, compressive residual stress is generated. Under the same condition, the mechanical properties greatly affect the residual stress during the machining process. After the stress-relieving heat treatment process, the residual stress of AISI A387 is reduced below the yield strength at 182 MPa. Therefore, it is necessary to control the temperature, avoid rapid heat change, and select machining conditions depending on the mechanical properties of materials during manufacturing processes. In addition, to sufficiently reduce the residual stress, it is necessary to study the optimum condition of the stress-relieving heat treatment process for each material.

Machining Characteristics of Hemisphere Shape by Ball Endmilling (볼엔드밀가공에 의한 구면형상의 가공특성)

  • Wang, Duck Hyun;Kim, Won Il;Lee, Yun Kyeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.5-14
    • /
    • 2002
  • Hemisphere shapes were machined for different tool paths and machining conditions with ball endmill cutters. It was also found out how feedrate affect the precision of the machining and also tried to study the most suitable feedrate in specific cutting condition. Tool deflection, cutting forces and shape accuracy were measured according to the inclination position of the sculptured surface. As the decreasing of inclination position angle, the tool deflection was increased due to the decreased cutting speed when the cutting edge is approaching toward the center. Tool deflection when upward cutting IS obtained less than that of downward cutting and down-milling in upward cutting showed the least tool deflection for the sculptured surface. For down-milling, the cutting resistance of the side wall direction is larger than that of feed direction. It was found that the tool deflection is getting better as tool path is going to far from the center for convex surface.

  • PDF

Performance Evaluation of Ti-Al-N coated Endmill by Arc ton Plating (아크이온플레이팅에 의한 Ti-Al-N코팅 엔드밀의 성능평가)

  • 이상용;강명창;김정석;김광호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.251-254
    • /
    • 2002
  • The technique of high speed machining is widely studied in machining field. In this study, TiAIN single-layered and TiAIN/TiN double-layered coatings were applied to end-mill by an arc ion plating technique. Their performances were comparatively studied about cutting force, tool wear, tool life and surface roughness of workpiece under high speed cutting conditions. The TiAIN single-layer coated tool showed higher wear-resistance due to its higher hardness, while the TiAIN/TiN double-layer coated tool showed better performance for high metal removal, i.e., high fled per tooth condition due to its higher toughness. The surface roughness of the workpiece was not influenced by the wear amount of coated tools.

  • PDF

The Effect to Drilling by The Chemical Reaction on The Surface (표면 화학 반응이 드릴 가공에 미치는 영향)

  • 이현우;최재영;정상철;박준민;정해도;최헌종;이석우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.976-979
    • /
    • 2002
  • This research presents the new method to fabricate small features through applying chemical mechanical micro machining(C3M) for Al5052 and single crystal silicon. To improve machinability of ductile and brittle material, reacted layer was formed on the surface before micro-drilling process by chemical reaction with $HNO_3$(10wt%) and KOH(10wt%). And then workpieces were machined to compare conventional micro-drilling process with newly suggested one. To evaluate whether or not the machinability was improved by the effect of chemical condition, surface defects such as burr, chipping and crack generation were measured. Finally, it is confirmed that C3M is one of the feasible tools for micro machining with the aid of effect of the chemical reaction.

  • PDF

A Study on Die of Bearing Rubber Seal by Formed Tool (총형공구를 이용한 베어링 Rubber Seal 금형가공에 관한 연구)

  • 노상흡;이희관;김연술;김도형;양균의
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.21-26
    • /
    • 2004
  • The formed tool is used to machine the geometrical shape of bearing rubber seal efficiently. The bearing rubber seal has complex geometry for the complicated geometrical shape to prevent leakage of lubricant oil and influx of the dust effectively. Because it is difficult to machine the unique shape exactly by the conventional tool, the formed tool is used in machining a rubber seal die. In this paper, It is performed to investigate machining characteristic of the formed tool; cutting edge wear, cutting force, and surface quality. Also, an efficient precision machining condition is proposed, and the inspection results of rubber seal with CAI are discussed.

Machined Profile Characteristics for Feedrate Change in Ball End Mill Cutting (볼엔드밀 가공시 이송변화에 따른 가공형상 특성)

  • 왕덕현;김원일;이윤경;임채열;우정윤;박창수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.95-102
    • /
    • 2002
  • Due to the development of the CNC machine tool and CAM software, sculptured surface machining can be broadly used in die and mold industries and ball end milling process is often used for the sculptured surface machining. It is found out how feedrate affects the precision of the machining and also tried to study the most suitable feedrate in specific cutting condition. Two eddy current sensors were used far measuring tool deflections of X, Y axis, dynamometer for cutting force and roundness tester for roundness. It was found that the tool deflection is getting better as tool path is going to further from the center of convex surface. The reason is that the cutting force is increased as the tool approaches to the center. Examining the roundness, cutting force and tool deflection characteristics, it was found that the most suitable feedrate is 90mm/min in convex surface and 120mm/min in concave surface.

An Experimental Study on the Proper Supply Method of Metal Cutting Coolant (절삭유 공급 방식의 최적화를 위한 실험적 연구)

  • 강재훈;송준엽;최종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.977-980
    • /
    • 2004
  • Metalworking fluids (MWFs) are fluids used during machining and grinding to prolong the life of the tool, carry away debris, and protect the surfaces of work pieces. These fluids reduce friction between the cutting tool and the work surface, reduce wear and galling, protect surface characteristics, reduce surface adhesion or welding and carry away generated heat. Workers can be exposed to MWFs by inhaling aerosols (mists) and by skin contact with the fluid. Skin contact occurs by dipping the hands into the fluid, splashes, or handling workpieces coated with the fluids. The amount of mist generated (and the resulting level of exposure) depends on many factors. To reduce the environmental pollution wastes and the potential health risks associated with occupational exposures to MWFs, it is required to establish optimum MWFs supply method and condition with minimum quantity in all over the mechanical machining field including high-speed type heavy cutting process.

  • PDF

A Study on the Characteristics of Wire Electrical Discharge Machining of the High-Hardened Mold Steel (고경도 금형강의 와이어 방전가공특성에 관한 연구)

  • Lee, S.H.;Jung, T.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.648-653
    • /
    • 2006
  • In this study, the characteristics of Wire Electrical Discharge Machining(WEDM) of the high-hardened mold steel were investigated. WEDM experiments have been carried out based on parameter of wire diameter, pulse on time, pulse off time, feed rate and cycle etc. From the results, the optimized WEDM cycle of RIGOR steel has been revealed as $5{\sim}7$ times. Also, geometrical accuracy of the Core Pin is dependent on WEDM wire radius machining condition and wire chattering.