• Title/Summary/Keyword: machine tool accuracy

Search Result 609, Processing Time 0.027 seconds

Contour machining error in NC milling process

  • Namkoong, Chikwan;Yellowely, I.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.116-125
    • /
    • 2001
  • The comprehensive system analysis for contour milling operation has performed in this study, which combined the each element with proper connectivity into closed loop system, and determined the system response by numerical simulation technique. The obtained simulated results were then compared with the experimental results from the practical points of view, and so forth, the governing equations were formulated into the estimation model, which predicted the total contour machining error within 25% accuracy. Through the procedural evaluation, it could ascertain the characteristics of generation mechan- ifs in circular contour machining error, and the weight of each factor.

  • PDF

Induction Motor Position Control Using Integral-Compensating Variable Structure Control Algorithm (적분보상형 가변구조제어기법을 이용한 유도 전동기 위치제어)

  • 강문호;정경민;박윤창
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.205-209
    • /
    • 1999
  • This paper proposes a variable structure position controller for an induction motor(IM) which uses a reaching law and an integral compensating nonlinear switching function. With the reaching law, reaching mode can be established quantitatively during transient state so that dynamic control performance is improved. With the integral compensating nonlinear switching function, both very low overshoot and high steady state control accuracy can be obtained by compensating the states chattering problem due to the unmodelled dynamics of inverter and feedback sensors. For experiment a digital servo driver which consists of a DSP and an IPM inverter was developed. With the various experimental results, IM position control performance was verified.

  • PDF

A Study on the Machining Properties of Ag-alloy for Jewelry Using Laser Machining (레이저 가공을 이용한 주얼리용 은합금의 가공특성)

  • Kim, W.S.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.223-230
    • /
    • 2007
  • It is absolutely that jewelry industry are cut and formed by using Nd-YAG laser for most accuracy shapes. Moreover, Jewelry manufacturing is needed to be more precise working, more saved time and more improved finance. So, This Study will show the ideas which make exactly formed shape and advanced qualities when cutting Ag-alloy. This ideas will give the fact that beginners are able to use easily to change and compound the form of jewelries by using Nd-YAG laser.

Influence of Chucking Forces upon the Accuracy of Circular Hole in Boring Process on the Turning (선반으로 보링가공 할 때 척킹력이 가공 정도에 미치는 영향)

  • Lee, Sang-Soo;Kang, Shin-Gil;Jeon, Young-Seog
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.58-64
    • /
    • 2008
  • The cutting process of materials is accompanied with the elastic and plastic deformation due to chucking forces in the boring process of thin holes on the turning. Upon removal of chucking forces at the end of process, the original shape is remained in the plastic deformation; on the other hand, it is modified in the elastic deformation due to spring back. Fixing materials by chucks on the turning has influence on roundness because the process is conducted with unbalanced distribution load induced from the fixing of three jaws. Moreover, the amount of spring back depends on the magnitude of fixing forces. We studied the change of roundness according to fixing forces as well as the method to reduce the influence of chucking forces.

A Study on the Machinability of Micro-Channel (마이크로 채널의 가공성에 관한 연구)

  • Hong, Min-Sung;Kim, Jong-Min
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.51-57
    • /
    • 2008
  • Recently, the manufacturer of microscopic structures along with the development of technology to produce electronics, communication and semiconductors allows various components to be smaller in size, with higher precision. Therefore, preoccupancy of micro/nano-level machining technology in order to product micro/nano-components and parts is key issue in the field of manufacturing. In this study, machinability of micro machining was studied through the machining of aluminum, brass and steel workpiece. Inspection of the cutting force variation patterns of large numbers of micro machining indicated that characteristics of the workpiece. Surface roughness prediction methods were developed by considering the variation of the static part of the feed direction cutting force. The accuracy of the proposed approaches were tested with experimental data and the agreement between the predictions and actual observations are addressed.

Precision Nanometrology and its Applications to Precision Nanosystems

  • Gao Wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.14-20
    • /
    • 2005
  • In this paper, a new field of metrology called 'precision nanometrology' is presented. The 'precision nanometrology' is the result of evolutions of the traditional 'precision metrology' and the new 'nanometrology'. 'Precision nanometrology' is defined here as the science of dimensional measurement and motion measurement with 100 nm to 0.1 nm resolution/uncertainty within a range of micrometer to meter. The definition is based on the fact that nanometrology in nanoengineering and the precision industries, such as semiconductor industry, precision machine tool industry, precision instrument industry, is not only concerned with the measurement resolution and/or uncertainty but also the range of measurement. It should also be pointed out that most of the measurement objects in nanoengineering have dimensions larger than 1 micrometer. After explaining the definition of precision nanometrology, the paper provides several examples showing the critical roles of precision nanometrology in precision nanosystems, including nanometrology system, nanofabrication system, and nanomechatronics system.

Sensitivity Analysis and Confidence Evaluation for Planar Errors of a Vertical Turning Center (수직형 선반의 평면 오차 민감도 분석 및 신뢰도 평가)

  • 여규환;양승환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.67-75
    • /
    • 1998
  • Geometric and thermal errors are key contributors to the errors of a computer numerically controlled turning center. A planar error synthesis model is obtained by synthesizing 11 geometric and thermal error components of a turning center with homogeneous coordinate transformation method. This paper shows the sensitivity analysis on the temperature change, the confidence evaluation on the uncertainty Of measurement systems, and the error contribution analysis from the planar error synthesis model. Planar error in the z direction was very sensitive to the temperature change. and planar errors in the x and z directions were not affected by the uncertainty of measurement systems. The error contribution analysis ,which is applicable to designing a new turning center, was helpful to find the large error components which affect planar errors of the turning center.

  • PDF

Adaptive Cross-Coupling Control for High-Speed Nonlinear Contour Machining (고속의 비선형 윤곽가공을 위한 적응 교차축 연동제어)

  • Lee, Yong-Seok;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.108-114
    • /
    • 2000
  • In this paper, a new adaptive cross-coupling control(CCC) method with an improved contour error model is proposed to maintain contouring precision in high-speed nonlinear contour machining. The proposed method utilizes variable controller gains based on the instantaneous curvature of a contour and the feedrate command. The proposed method is evaluated and compared with the conventional CCC for nonlinear contouring motion through computer simulations. The simulation results show that the proposed CCC improves the contouring accuracy more effectively than the existing method.

  • PDF

An Efficient Binarization Method for Vehicle License Plate Character Recognition

  • Yang, Xue-Ya;Kim, Kyung-Lok;Hwang, Byung-Kon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1649-1657
    • /
    • 2008
  • In this paper, to overcome the failure of binarization for the characters suffered from low contrast and non-uniform illumination in license plate character recognition system, we improved the binarization method by combining local thresholding with global thresholding and edge detection. Firstly, apply the local thresholding method to locate the characters in the license plate image and then get the threshold value for the character based on edge detector. This method solves the problem of local low contrast and non-uniform illumination. Finally, back-propagation Neural Network is selected as a powerful tool to perform the recognition process. The results of the experiments i1lustrate that the proposed binarization method works well and the selected classifier saves the processing time. Besides, the character recognition system performed better recognition accuracy 95.7%, and the recognition speed is controlled within 0.3 seconds.

  • PDF

Optimization Calculations and Machine Learning Aimed at Reduction of Wind Forces Acting on Tall Buildings and Mitigation of Wind Environment

  • Tanaka, Hideyuki;Matsuoka, Yasutomo;Kawakami, Takuma;Azegami, Yasuhiko;Yamamoto, Masashi;Ohtake, Kazuo;Sone, Takayuki
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.291-302
    • /
    • 2019
  • We performed calculations combining optimization technologies and Computational Fluid Dynamics (CFD) aimed at reducing wind forces and mitigating wind environments (local strong winds) around buildings. However, the Reynolds Averaged Navier-stokes Simulation (RANS), which seems somewhat inaccurate, needs to be used to create a realistic CFD optimization tool. Therefore, in this study we explored the possibilities of optimizing calculations using RANS. We were able to demonstrate that building configurations advantageous to wind forces could be predicted even with RANS. We also demonstrated that building layouts was more effective than building configurations in mitigating local strong winds around tall buildings. Additionally, we used the Convolutional Neural Network (CNN) as an airflow prediction method alternative to CFD in order to increase the speed of optimization calculations, and validated its prediction accuracy.