• 제목/요약/키워드: machine learning-based OHCA detection

검색결과 1건 처리시간 0.014초

119 응급신고에서 수보요원과 신고자의 통화분석을 활용한 머신 러닝 기반의 심정지 탐지 모델 (Machine-learning-based out-of-hospital cardiac arrest (OHCA) detection in emergency calls using speech recognition)

  • 김종인;이주영;정지오;신대진;최동현;김기홍;홍기정;김선희;정민화
    • 말소리와 음성과학
    • /
    • 제15권4호
    • /
    • pp.109-118
    • /
    • 2023
  • 심정지는 초기 대응에 따라 생존율과 예후에 영향을 미치는 중요한 응급 상황이다. 특히 병원밖심정지(out-of-hospital cardiac arrest, OHCA)의 경우, 119 구조대의 초기 조치가 심정지 환자의 생존율을 높이는 데 결정적인 역할을 한다. 그러나 국내에서는 수보요원의 수가 제한적이지만 다량의 신고 전화에 응대해야 하는 현실이다. 이런 상황에서 머신러닝 기반의 OHCA 탐지 프로그램은 수보요원의 보조 역할로 심정지 환자의 생존률을 높일 수 있다. 본 연구에서는 이러한 문제를 해결하기 위해 머신러닝 기반의 심정지(OHCA) 탐지 프로그램을 개발하였다. 이 프로그램은 수보요원과 신고자의 통화 녹취록을 분석하여 심정지 여부를 판단한다. 제안한 모델은 수보요원 및 신고자와의 통화를 자동으로 전사하는 모델, 텍스트 기반의 심정지 탐지 모델, 그리고 프로그램 개발을 위한 서버와 클라이언트로 구성되어 있다. 실험 결과, 본 연구에서 제안한 모델은 F1 점수 기준으로 79.49%의 성능을 보였으며, 수보요원과 비교하여 심정지 감지 시간을 15초 단축하였다. 이 연구는 소규모 데이터셋을 사용하였음에도 불구하고, 심정지 기반의 탐지 프로그램이 수보요원의 보조 역할로 심정지 생존률에 기여할 수 있음을 입증하였다.