In Web registration pages and online polling applications, CAPTCHA(Completely Automated Public Turing Test To Tell Computers and Human Apart) is used for distinguishing human users from automated programs. Text-based CAPTCHAs have been widely used in many popular Web sites in which distorted text is used. However, because the advanced optical character recognition techniques can recognize the distorted texts, the reliability becomes low. Image-based CAPTCHAs have been proposed to improve the reliability of the text-based CAPTCHAs. However, these systems also are known as having some drawbacks. First, some image-based CAPTCHA systems with small number of image files in their image dictionary is not so reliable since attacker can recognize images by repeated executions of machine learning programs. Second, users may feel uncomfortable since they have to try CAPTCHA tests repeatedly when they fail to input a correct keyword. Third, some image-base CAPTCHAs require high communication cost since they should send several image files for one CAPTCHA. To solve these problems of image-based CAPTCHA, this paper proposes a new CAPTCHA based on both image and text. In this system, an image and keywords are integrated into one CAPTCHA image to give user a hint for the answer keyword. The proposed CAPTCHA can help users to input easily the answer keyword with the hint in the fused image. Also, the proposed system can reduce the communication costs since it uses only a fused image file for one CAPTCHA. To improve the reliability of the image-text fusion CAPTCHA, we also propose a dynamic building method of large image dictionary from gathering huge amount of images from theinternet with filtering phase for preserving the correctness of CAPTCHA images. In this paper, we proved that the proposed image-text fusion CAPTCHA provides users more convenience and high reliability than the image-based CAPTCHA through experiments.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.12
/
pp.546-554
/
2019
Typically, closed-circuit television (CCTV) monitoring is mainly used for post-processes (i.e. to provide evidence after an incident has occurred), but by using a streaming video feed, machine-based learning, and advanced image recognition techniques, current technology can be extended to respond to crimes or reports of missing persons in real time. The multi-CCTV cooperation technique developed in this study is a program model that delivers similarity information about a suspect (or moving object) extracted via CCTV at one location and sent to a monitoring agent to track the selected suspect or object when he, she, or it moves out of range to another CCTV camera. To improve the operating efficiency of local government CCTV control centers, we describe here the partial automation of a CCTV control system that currently relies upon monitoring by human agents. We envisage an integrated crime prevention service, which incorporates the cooperative CCTV network suggested in this study and that can easily be experienced by citizens in ways such as determining a precise individual location in real time and providing a crime prevention service linked to smartphones and/or crime prevention/safety information.
There are many investors in the stock market, and more and more people get interested in the stock investment. In order to avoid risks and make profit in the stock investment, we have to determine several aspects using various information. That is, we have to select profitable stocks and determine appropriate buying/selling prices and holding period. This paper proposes a data mining tool for the investors' decision support. The data mining tool makes stock investors apply machine learning techniques and generate stock price prediction model. Also it helps determine buying/selling prices and holding period. It supports individual investor's own decision making using past data. Using the proposed tool, users can manage stock data, generate their own stock price prediction models, and establish trading policy via investment simulation. Users can select technical indicators which they think affect future stock price. Then they can generate stock price prediction models using the indicators and test the models. They also perform investment simulation using proper models to find appropriate trading policy consisting of buying/selling prices and holding period. Using the proposed data mining tool, stock investors can expect more profit with the help of stock price prediction model and trading policy validated on past data, instead of with an emotional decision.
KIPS Transactions on Computer and Communication Systems
/
v.7
no.1
/
pp.9-18
/
2018
Enhancing performance of big data analytics in distributed environment has been issued because most of the big data related applications such as machine learning techniques and streaming services generally utilize distributed computing frameworks. Thus, optimizing performance of those applications at Spark has been actively researched. Since optimizing performance of the applications at distributed environment is challenging because it not only needs optimizing the applications themselves but also requires tuning of the distributed system configuration parameters. Although prior researches made a huge effort to improve execution performance, most of them only focused on one of three performance optimization aspect: application design, system tuning, hardware utilization. Thus, they couldn't handle an orchestration of those aspects. In this paper, we deeply analyze and model the application processing procedure of the Spark. Through the analyzed results, we propose performance optimization schemes for each step of the procedure: inner stage and outer stage. We also propose appropriate partitioning mechanism by analyzing relationship between partitioning parallelism and performance of the applications. We applied those three performance optimization schemes to WordCount, Pagerank, and Kmeans which are basic big data analytics and found nearly 50% performance improvement when all of those schemes are applied.
Piecewise Integrated Composite (PIC) beam is composed of different stacking against loading type depending upon location. The aim of current study is to assign robust stacking sequences against external loading to every corresponding part of the PIC beam based on the value of stress triaxiality at generated reference points using the k-NN (k-Nearest Neighbor) classification, which is one of representative machine learning techniques, in order to excellent superior bending characteristics. The stress triaxiality at reference points is obtained by three-point bending analysis of the Al beam with training data categorizing the type of external loading, i.e., tension, compression or shear. Loading types of each plane of the beam were classified by independent plane scheme as well as total beam scheme. Also, loading fidelities were calibrated for each case with the variation of hyper-parameters. Most effective stacking sequences were mapped into the PIC beam based on the k-NN classification model with the highest loading fidelity. FE analysis result shows the PIC beam has superior external loading resistance and energy absorption compared to conventional beam.
Journal of the Korea Society of Computer and Information
/
v.26
no.11
/
pp.1-9
/
2021
3D-NAND flash memory provides high capacity per unit area by stacking 2D-NAND cells having a planar structure. However, due to the nature of the lamination process, there is a problem that the frequency of error occurrence may vary depending on each layer or physical cell location. This phenomenon becomes more pronounced as the number of write/erase(P/E) operations of the flash memory increases. Most flash-based storage devices such as SSDs use ECC for error correction. Since this method provides a fixed strength of data protection for all flash memory pages, it has limitations in 3D NAND flash memory, where the error rate varies depending on the physical location. Therefore, in this paper, pages and layers with different error rates are classified into clusters through the K-means machine learning algorithm, and differentiated data protection strength is applied to each cluster. We classify pages and layers based on the number of errors measured after endurance test, where the error rate varies significantly for each page and layer, and add parity data to stripes for areas vulnerable to errors to provides differentiate data protection strength. We show the possibility that this differentiated data protection policy can contribute to the improvement of reliability and lifespan of 3D NAND flash memory compared to the protection techniques using RAID-like or ECC alone.
Owing to the increase of FTA, food trade, and versatile preferences of consumers, food import has increased at tremendous rate every year. While the inspection check of imported food accounts for about 20% of the total food import, the budget and manpower necessary for the government's import inspection control is reaching its limit. The sudden import food accidents can cause enormous social and economic losses. Therefore, predictive system to forecast the compliance of food import with its preemptive measures will greatly improve the efficiency and effectiveness of import safety control management. There has already been a huge data accumulated from the past. The processed foods account for 75% of the total food import in the import food sector. The analysis of big data and the application of analytical techniques are also used to extract meaningful information from a large amount of data. Unfortunately, not many studies have been done regarding analyzing the import food and its implication with understanding the big data of food import. In this context, this study applied a variety of classification algorithms in the field of machine learning and suggested a data preprocessing method through the generation of new derivative variables to improve the accuracy of the model. In addition, the present study compared the performance of the predictive classification algorithms with the general base classifier. The Gaussian Naïve Bayes prediction model among various base classifiers showed the best performance to detect and predict the nonconformity of imported food. In the future, it is expected that the application of the abnormality detection model using the Gaussian Naïve Bayes. The predictive model will reduce the burdens of the inspection of import food and increase the non-conformity rate, which will have a great effect on the efficiency of the food import safety control and the speed of import customs clearance.
One of the most intensively conducted research areas in business application study is a bankruptcy prediction model, a representative classification problem related to loan lending, investment decision making, and profitability to financial institutions. Many research demonstrated outstanding performance for bankruptcy prediction models using artificial intelligence techniques. However, since most machine learning algorithms are "black-box," AI has been identified as a prominent research topic for providing users with an explanation. Although there are many different approaches for explanations, this study focuses on explaining a bankruptcy prediction model using a counterfactual example. Users can obtain desired output from the model by using a counterfactual-based explanation, which provides an alternative case. This study introduces a counterfactual generation technique based on a genetic algorithm (GA) that leverages both domain knowledge (i.e., causal feasibility) and feature importance from a black-box model along with other critical counterfactual variables, including proximity, distribution, and sparsity. The proposed method was evaluated quantitatively and qualitatively to measure the quality and the validity.
Purpose: In the case of domestic port facilities, port structures that have been in use for a long time have many problems in terms of safety performance and functionality due to the enlargement of ships, increased frequency of use, and the effects of natural disasters due to climate change. A big data analysis method was studied to develop an approximate model that can predict the aging pattern of a port facility based on the maintenance history data of the port facility. Method: In this study, member-level maintenance history data for caisson-type quay walls were collected, defined as big data, and based on the data, a predictive approximation model was derived to estimate the aging pattern and deterioration of the facility at the project level. A state-based aging pattern prediction model generated through Gaussian process (GP) and linear interpolation (SLPT) techniques was proposed, and models suitable for big data utilization were compared and proposed through validation. Result: As a result of examining the suitability of the proposed method, the SLPT method has RMSE of 0.9215 and 0.0648, and the predictive model applied with the SLPT method is considered suitable. Conclusion: Through this study, it is expected that the study of predicting performance degradation of big data-based facilities will become an important system in decision-making regarding maintenance.
Kim, Sihyeon;Seong, Byeongchan;Choi, Young-Geun;Yeo, In-kwon
The Korean Journal of Applied Statistics
/
v.35
no.4
/
pp.553-568
/
2022
The Household Income and Expenditure Survey is a representative survey of Statistics Korea, which aims to measure and analyze national income and consumption levels and their changes by understanding the current state of household balances. Recently, the disconnection problem in these time series caused by the large-scale reorganization of the survey methods in 2017 and 2019 has become an issue. In this study, we model the characteristics of the time series in the Household Income and Expenditure Survey up to 2016, and use the modeling to compute forecasts for linking the expenditures in 2017 and 2018. In order to evenly reflect the characteristics across all expenditure item series and to reduce the impact of a specific forecast model, we synthesize a total of 8 models such as regression models, time series models, and machine learning techniques. In particular, the noteworthy aspect of this study is that it improves the forecast by using the optimal combination technique that can exactly reflect the hierarchical structure of the Household Income and Expenditure Survey without loss of information as in the top-down or bottom-up methods. As a result of applying the proposed method to forecast expenditure series from 2017 to 2019, it contributed to the recovery of time series linkage and improved the forecast. In addition, it was confirmed that the hierarchical time series forecasts by the optimal combination method make linkage results closer to the actual survey series.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.