The damages caused by landslides are increasing worldwide due to climate change. In Korea, damages from landslides occur frequently, making it necessary to develop the effective response strategies. In particular, there is a lack of countermeasures against landslides in cultural heritage areas. The purpose of this study was to spatially analyze the relationship between Buyeo-gun's cultural heritage and landslide susceptible areas in Buyeo-gun, Chungcheongnam-do, which has a long history. Nine spatial distribution models were used to evaluate the landslide susceptibility, and the ensemble method was applied to reduce the uncertainty of individual model. There were 17 cultural heritages belonging to the landslide susceptible area. As a result of calculating the area ratio of the landslide susceptible area for cultural heritages, the cultural heritages with 100% of the area included in the landslide susceptible area were "Standing statue of Maae in Hongsan Sangcheon-ri" and "Statue of King Seonjo." More than 35% of "Jeungsanseong", "Garimseong", and "Standing stone statue of Maitreya Bodhisattva in Daejosa Temple" belonged to landslide susceptible areas. In order to effectively prevent landslide damage, the application of landslide prevention measures should be prioritized according to the proportion belonging to the landslide susceptible area. Since it is very difficult to restore cultural properties once destroyed, preventive measures are required before landslide damage occurs. The approach and results of this study provide basic data and guidelines for disaster response plans to prevent landslides in Buyeo-gun.
본 논문은 XR 콘텐츠나 인터페이스 환경에서 활용할 수 있는 음향 자극의 종류를 고찰하고, 청각 자극 기반의 감성 유발이 뇌과학적으로 실효성을 가지는지에 대해 논의하였다. 외부 청각자극, 감성변화 및 뇌연결성의 상관관계 규명에 초점을 맞추어, XR 환경에서 사용자 경험을 제고하기 위한 기계학습 기반 개인 맞춤형 사운드 트랙 제공 서비스 개발이 필요하다는 시사점을 도출하였다. 또한, 짧은 음향자극으로 감성을 유발할 수 있는지를 테스트하여 청각자극에 의해 유발된 각성상태에서 우측 전두엽이나 전두엽, 두정엽, 후두엽 네트워크에서 뇌의 기능적 연결성이 강화되고 이완시에는 상반된 패턴을 보이는 것을 확인하였다. 본 연구에서 도출된 결과는 보다 입체적인 XR 상호작용 경험을 제시하고 사용자의 XR 인지수용성을 제고하여, 현장에서 실질적으로 적용될 수 있는 초실감 XR 사운드 바이오피드백 시스템 개발에 활용될 수 있을 것이다.
Objective: The purpose of this study is to use logistic regression and decision tree analysis to identify the factors that affect the success or failurein the national physical therapy examination; and to build and compare predictive models. Design: Secondary data analysis study Methods: We analyzed 76,727 subjects from the physical therapy national examination data provided by the Korea Health Personnel Licensing Examination Institute. The target variable was pass or fail, and the input variables were gender, age, graduation status, and examination area. Frequency analysis, chi-square test, binary logistic regression, and decision tree analysis were performed on the data. Results: In the logistic regression analysis, subjects in their 20s (Odds ratio, OR=1, reference), expected to graduate (OR=13.616, p<0.001) and from the examination area of Jeju-do (OR=3.135, p<0.001), had a high probability of passing. In the decision tree, the predictive factors for passing result had the greatest influence in the order of graduation status (x2=12366.843, p<0.001) and examination area (x2=312.446, p<0.001). Logistic regression analysis showed a specificity of 39.6% and sensitivity of 95.5%; while decision tree analysis showed a specificity of 45.8% and sensitivity of 94.7%. In classification accuracy, logistic regression and decision tree analysis showed 87.6% and 88.0% prediction, respectively. Conclusions: Both logistic regression and decision tree analysis were adequate to explain the predictive model. Additionally, whether actual test takers passed the national physical therapy examination could be determined, by applying the constructed prediction model and prediction rate.
Ge, Genwang;Liu, Yingzi;Al-Tamimi, Haneen M.;Pourrostam, Towhid;Zhang, Xian;Ali, H. Elhosiny;Jan, Amin;Salameh, Anas A.
Computers and Concrete
/
제29권 6호
/
pp.375-391
/
2022
This paper examined the impact of the cross-sectional structure on the structural results under different loading conditions of reinforced concrete (RC) members' management limited in Carbon Fiber Reinforced Polymers (CFRP). The mechanical properties of CFRC was investigated, then, totally 32 samples were examined. Test parameters included the cross-sectional shape as square, rectangular and circular with two various aspect rates and loading statues. The loading involved concentrated loading, eccentric loading with a ratio of 0.46 to 0.6 and pure bending. The results of the test revealed that the CFRP increased ductility and load during concentrated processing. A cross sectional shape from 23 to 44 percent was increased in load capacity and from 250 to 350 percent increase in axial deformation in rectangular and circular sections respectively, affecting greatly the accomplishment of load capacity and ductility of the concentrated members. Two Artificial Intelligence Models as Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) were used to estimating the tensile and flexural strength of specimen. On the basis of the performance from RMSE and RSQR, C-Shape CFRC was greater tensile and flexural strength than any other FRP composite design. Because of the mechanical anchorage into the matrix, C-shaped CFRCC was noted to have greater fiber-matrix interfacial adhesive strength. However, with the increase of the aspect ratio and fiber volume fraction, the compressive strength of CFRCC was reduced. This possibly was due to the fact that during the blending of each fiber, the volume of air input was increased. In addition, by adding silica fumed to composites, the tensile and flexural strength of CFRCC is greatly improved.
부동산 가격은 국가, 기업, 가계에 영향을 미치며 최근 급등하는 부동산 가격에 부동산 버블에 관한 연구가 많이 시행되고 있다. 하지만 부동산 버블 예측에서 단순히 부동산 가격만을 비교하거나, 부동산 매매에서 핵심적인 심리적 변수를 반영하지 못한다면 버블 예측 모형의 정확성이 떨어진다 판단할 수 있다. 본 연구는 오토인코더 기법을 사용하여 지역별 부동산 버블 상황을 설명할 수 있는 예측 모형을 설계하는 것이 목적이다. 기존의 부동산 버블 분석 연구들이 가격에 영향을 미치는 다양한 종류의 변수를 설정하지 못하였고 주로 선형 모형을 기반으로 연구를 진행했다는 부분에서, 본 연구는 기존 부동산 버블 연구에 사용되지 않았던 기법과 변수들의 도입 가능성을 시사한다.
현재의 인공지능에서 사용되는 자연어 처리 모델은 거대하여 실시간으로 데이터를 처리하고 분석하는 것은 여러가지 어려움들을 야기하고 있다. 이런 어려움을 해결하기 위한 방법으로 메모리를 적게 사용해 처리의 효율성을 개선하는 방법을 제안하고 제안된 모델의 성능을 확인하였다. 본 논문에서 제안한 모델의 성능평가를 위해 적용한 기법은 BERT[1] 모델의 어텐션 헤드 개수와 임베딩 크기를 작게 조절해 큰 말뭉치를 나눠서 분할 처리 후 출력값의 평균을 통해 결과를 산출하였다. 이 과정에서 입력 데이터의 다양성을 주기위해 매 에폭마다 임의의 오프셋을 문장에 부여하였다. 그리고 모델을 분류가 가능하도록 미세 조정하였다. 말뭉치를 분할 처리한 모델은 그렇지 않은 모델 대비 정확도가 12% 정도 낮았으나, 모델의 파라미터 개수는 56% 정도 절감되는 것을 확인하였다.
Thamer Alsaif;Nikolaos Pandis;Martyn T. Cobourne;Jadbinder Seehra
대한치과교정학회지
/
제53권5호
/
pp.328-335
/
2023
Objective: The aim of this study was to determine whether an association between study quality, other study characteristics, and Altmetric Attention Scores (AASs) existed in orthodontic studies. Methods: The Scopus database was searched to identify orthodontic studies published between January 1, 2017, and December 31, 2019. Articles that satisfied the eligibility criteria were included in this study. Study characteristics, including study quality were extracted and entered into a pre-pilot data collection sheet. Descriptive statistics were calculated. On an exploratory basis, random forest and gradient boosting machine learning algorithms were used to examine the influence of article characteristics on AAS. Results: In total, 586 studies with an AAS were analyzed. Overall, the mean AAS of the samples was 5. Twitter was the most popular social media platform for publicizing studies, accounting for 53.7%. In terms of study quality, only 19.1% of the studies were rated as having a high level of quality, with 41.8% of the studies deemed moderate quality. The type of social media platform, number of citations, impact factor, and study type were among the most influential characteristics of AAS in both models. In contrast, study quality was one of the least influential characteristics on the AAS. Conclusions: Social media platforms contributed the most to the AAS for orthodontic studies, whereas study quality had little impact on the AAS.
반려견의 등록 누계 현황은 2016년도 107만건에서 2020년 232만건을 기록하고 있다. 매년 동물 등록이 10% 이상씩 증가하고 있고, 이에 따라 반려견을 등록 할 때 이름을 정해야 한다. 반려견 외모의 특징에 맞는 이름을 지어주고 싶지만, 이름을 정하는 것은 많은 어려움이 있다. 본 논문에서는 반려견의 이미지를 인식하고 닮은 사물이나 음식을 기반으로 반려견의 이름을 추천해주는 시스템의 개발 내용을 기술한다. 이 시스템은 다양한 사물과 음식의 이미지를 학습한 모델을 통해 반려견의 이미지와의 유사도를 추출하고, 유사도를 기반으로 강아지의 이름을 추천해준다. 또한 결과값으로 나온 이미지 데이터를 기반으로 연관된 연상단어를 추가로 추천해줌으로써 사용자들에게 다양한 선택지를 제공하고 편의를 높이고 흥미와 재미를 높일 수 있다. 본 시스템을 통해 반려견의 이름을 짓는 고민거리를 해결하고 편하게 반려견에게 어울리는 이름을 확인할 수 있으며, 다양한 추천 이름을 통해 폭넓은 선택지를 줌으로써 사용자들의 만족도를 높일 수 있을 것으로 기대한다.
코로나 바이러스의 발병 이후, 의료 산업은 침체기에 들어섰으며, 이에 대한 대응책으로 정부는 일시적으로 비대면 진료를 허용한 상태이다. 본 연구에서는, 이런 시대 흐름에 맞추어 의료 산업에 있어 현대인의 비대면 의학상담에 대한 관심도를 분석하고자 한다. 전문가에게 의학상담을 받을 수 있는 플랫폼인 지식인과, 유튜브 두가지 소셜 플랫폼에서 빅데이터를 수집해 연구를 진행했다. 전화 상담 상위 5개 키워드인 "내과", "일반의", "산경과", "정신건강의학과", "소아청소년과"와 더불어, "전문의", "의학상담", "건강정보" 총 8개의 검색어를 가지고 각 플랫폼으로부터 데이터 세트를 구축했다. 이후 크롤링 된 데이터를 바탕으로 형태소 분류, 질병 추출, 정규화 등 전처리 과정을 거쳤다. 단어 빈도수를 기준으로 한 워드 클라우드, 꺾은선 그래프, 분기별 그래프, 질병 등장 빈도별 막대 그래프 등으로 데이터 시각화를 하였다. 유튜브 데이터에 한해 감성 분류 모델을 구축하였고, GRU와 BERT 기반 모델의 성능을 비교하였다.
기후변화 보고서에 따르면 집중 호우의 강도 및 빈도 증가가 향후 몇 년동안 지속될 것이라 제시하였다. 이러한 집중호우가 빈번히 발생하게 된다면 강우 침식성이 증가하여 표토 침식에 더 취약하게 발생된다. Universal Soil Loss Equation (USLE) 입력 매개 변수 중 하나인 강우침식능인자는 토양 유실을 예측할때 강우 강도의 미치는 영향을 제시하는 인자이다. 선행 연구에서 USLE 방법을 사용하여 강우침식능인자를 산정하였지만, 60분 단위 강우자료를 이용하였기 때문에 정확한 30분 최대 강우강도 산정을 고려하지 못하는 한계점이 있다. 본 연구의 목적은 강우침식능인자를 이전의 진행된 방법보다 더 빠르고 정확하게 예측하는 머신러닝 모델을 개발하며, 총 월별 강우량, 최대 일 강우량 및 최대 시간별 강우량 데이터만 있어도 산정이 가능하도록 하였다. 이를 위해 본 연구에서는 강우침식능인자의 산정 값의 정확도를 높이기 위해 1분 간격 강우 데이터를 사용하며, 최근 강우 패턴을 반영하기 위해서 2013-2019년 자료로 이용했다. 우선, 월별 특성을 파악하기 위해 USLE 계산 방법을 사용하여 월별 강우침식능인자를 산정하였고, 국내 50개 지점을 대상으로 계산된 월별 강우침식능인자를 실측 값으로 정하여, 머신러닝 모델을 통하여 강우침식능인자 예측하도록 학습시켜 분석하였다. 이 연구에 사용된 머신러닝 모델들은 Decision Tree, Random Forest, K-Nearest Neighbors, Gradient Boosting, eXtreme Gradient Boost 및 Deep Neural Network을 이용하였다. 또한, 교차 검증을 통해서 모델 중 Deep Neural Network이 강우침식능인자 예측 정확도가 가장 높게 산정하였다. Deep Neural Network은 Nash-Sutcliffe Efficiency (NSE) 와 Coefficient of determination (R2)의 결과값이 0.87로서 모델의 예측성을 입증하였으며, 검증 모델을 테스트 하기 위해 국내 6개 지점을 무작위로 선별하여 강우침식능인자를 분석하였다. 본 연구 결과에서 나온 Deep Neural Network을 이용하면, 훨씬 적은 노력과 시간으로 원하는 지점에서 월별 강우침식능인자를 예측할 수 있으며, 한국 강우 패턴을 효율적으로 분석 할 수 있을 것이라 판단된다. 이를 통해 향후 토양 침식 위험을 지표화하는 것뿐만 아니라 토양 보전 계획을 수립할 수 있으며, 위험 지역을 우선적으로 선별하고 제시하는데 유용하게 사용 될 것이라 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.