• 제목/요약/키워드: machine learning modeling

검색결과 273건 처리시간 0.03초

머신러닝 및 딥러닝 연구동향 분석: 토픽모델링을 중심으로 (Research Trends Analysis of Machine Learning and Deep Learning: Focused on the Topic Modeling)

  • 김창식;김남규;곽기영
    • 디지털산업정보학회논문지
    • /
    • 제15권2호
    • /
    • pp.19-28
    • /
    • 2019
  • The purpose of this study is to examine the trends on machine learning and deep learning research in the published journals from the Web of Science Database. To achieve the study purpose, we used the abstracts of 20,664 articles published between 1990 and 2017, which include the word 'machine learning', 'deep learning', and 'artificial neural network' in their titles. Twenty major research topics were identified from topic modeling analysis and they were inclusive of classification accuracy, machine learning, optimization problem, time series model, temperature flow, engine variable, neuron layer, spectrum sample, image feature, strength property, extreme machine learning, control system, energy power, cancer patient, descriptor compound, fault diagnosis, soil map, concentration removal, protein gene, and job problem. The analysis of the time-series linear regression showed that all identified topics in machine learning research were 'hot' ones.

Modeling of AutoML using Colored Petri Net

  • Yo-Seob, Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제10권4호
    • /
    • pp.420-426
    • /
    • 2022
  • Developing a machine learning model and putting it into production goes through a number of steps. Automated Machine Learning(AutoML) appeared to increase productivity and efficiency by automating inefficient tasks that occur while repeating this process whenever machine learning is applied. The high degree of automation of AutoML models allows non-experts to use machine learning models and techniques without the need to become machine learning experts. Automating the process of applying machine learning end-to-end with AutoML models has the added benefit of creating simpler solutions, generating these solutions faster, and often generating models that outperform hand-designed models. In this paper, the AutoML data is collected and AutoML's Color Petri net model is created and analyzed based on it.

기계학습 응용 및 학습 알고리즘 성능 개선방안 사례연구 (A Case Study on Machine Learning Applications and Performance Improvement in Learning Algorithm)

  • 이호현;정승현;최은정
    • 디지털융복합연구
    • /
    • 제14권2호
    • /
    • pp.245-258
    • /
    • 2016
  • 본 논문에서는 기계학습과 관련된 다양한 사례들에 대한 연구를 바탕으로 기계학습 응용 및 학습 알고리즘의 성능 개선 방안을 제시한다. 이를 위해 기계학습 기법을 적용하여 결과를 얻어낸 문헌을 자료로 수집하고 학문분야로 나누어 각 분야에서 적합한 기계학습 기법을 선택 및 추천하였다. 공학에서는 SVM, 의학에서는 의사결정나무, 그 외 분야에서는 SVM이 빈번한 이용 사례와 분류/예측의 측면에서 그 효용성을 보였다. 기계학습의 적용 사례분석을 통해 응용 방안의 일반적 특성화를 꾀할 수 있었다. 적용 단계는 크게 3단계로 이루어진다. 첫째, 데이터 수집, 둘째, 알고리즘을 통한 데이터 학습, 셋째, 알고리즘에 대한 유의미성 테스트 이며, 각 단계에서의 알고리즘의 결합을 통해 성능을 향상시킨다. 성능 개선 및 향상의 방법은 다중 기계학습 구조 모델링과 $+{\alpha}$ 기계학습 구조 모델링 등으로 분류한다.

Machine Learning Approaches to Corn Yield Estimation Using Satellite Images and Climate Data: A Case of Iowa State

  • Kim, Nari;Lee, Yang-Won
    • 한국측량학회지
    • /
    • 제34권4호
    • /
    • pp.383-390
    • /
    • 2016
  • Remote sensing data has been widely used in the estimation of crop yields by employing statistical methods such as regression model. Machine learning, which is an efficient empirical method for classification and prediction, is another approach to crop yield estimation. This paper described the corn yield estimation in Iowa State using four machine learning approaches such as SVM (Support Vector Machine), RF (Random Forest), ERT (Extremely Randomized Trees) and DL (Deep Learning). Also, comparisons of the validation statistics among them were presented. To examine the seasonal sensitivities of the corn yields, three period groups were set up: (1) MJJAS (May to September), (2) JA (July and August) and (3) OC (optimal combination of month). In overall, the DL method showed the highest accuracies in terms of the correlation coefficient for the three period groups. The accuracies were relatively favorable in the OC group, which indicates the optimal combination of month can be significant in statistical modeling of crop yields. The differences between our predictions and USDA (United States Department of Agriculture) statistics were about 6-8 %, which shows the machine learning approaches can be a viable option for crop yield modeling. In particular, the DL showed more stable results by overcoming the overfitting problem of generic machine learning methods.

Review on Applications of Machine Learning in Coastal and Ocean Engineering

  • Kim, Taeyoon;Lee, Woo-Dong
    • 한국해양공학회지
    • /
    • 제36권3호
    • /
    • pp.194-210
    • /
    • 2022
  • Recently, an analysis method using machine learning for solving problems in coastal and ocean engineering has been highlighted. Machine learning models are effective modeling tools for predicting specific parameters by learning complex relationships based on a specified dataset. In coastal and ocean engineering, various studies have been conducted to predict dependent variables such as wave parameters, tides, storm surges, design parameters, and shoreline fluctuations. Herein, we introduce and describe the application trend of machine learning models in coastal and ocean engineering. Based on the results of various studies, machine learning models are an effective alternative to approaches involving data requirements, time-consuming fluid dynamics, and numerical models. In addition, machine learning can be successfully applied for solving various problems in coastal and ocean engineering. However, to achieve accurate predictions, model development should be conducted in addition to data preprocessing and cost calculation. Furthermore, applicability to various systems and quantifiable evaluations of uncertainty should be considered.

'인공지능', '기계학습', '딥 러닝' 분야의 국내 논문 동향 분석 (Trend Analysis of Korea Papers in the Fields of 'Artificial Intelligence', 'Machine Learning' and 'Deep Learning')

  • 박홍진
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권4호
    • /
    • pp.283-292
    • /
    • 2020
  • 4차 산업혁명의 대표적인 이미지 중 하나인 인공지능은 2016년 알파고 이후에 인공지능 인식이 매우 높아져 있다. 본 논문은 학국교육학술정보원에서 제공하는 국내 논문 중 '인공지능', '기계학습', '딥 러닝'으로 검색된 국내 발표 논문에 대해서 분석하였다. 검색된 논문은 약 1만여건이며 논문 동향을 파악하기 위해 빈도분석과 토픽 모델링, 의미 연결망을 이용하였다. 추출된 논문을 분석한 결과, 2015년에 비해 2016년에는 인공지능 분야는 600%, 기계학습은 176%, 딥 러닝 분야는 316% 증가하여 알파고 이후에 인공지능 분야의 연구가 활발히 진행됨을 확인할 수 있었다. 또한, 2018년 부터는 기계학습보다 딥 러닝 분야가 더 많이 연구 발표되고 있다. 기계학습에서는 서포트 벡터 머신 모델이, 딥 러닝에서는 텐서플로우를 이용한 컨볼루션 신경망이 많이 활용되고 있음을 알 수 있었다. 본 논문은 '인공지능', '기계학습', '딥 러닝' 분야의 향후 연구 방향을 설정하는 도움을 제공할 수 있다.

머신러닝 기법과 계측 모니터링 데이터를 이용한 광안대교 신축거동 모델링 (Modeling on Expansion Behavior of Gwangan Bridge using Machine Learning Techniques and Structural Monitoring Data)

  • 박지현;신성우;김수용
    • 한국안전학회지
    • /
    • 제33권6호
    • /
    • pp.42-49
    • /
    • 2018
  • In this study, we have developed a prediction model for expansion and contraction behaviors of expansion joint in Gwangan Bridge using machine learning techniques and bridge monitoring data. In the development of the prediction model, two famous machine learning techniques, multiple regression analysis (MRA) and artificial neural network (ANN), were employed. Structural monitoring data obtained from bridge monitoring system of Gwangan Bridge were used to train and validate the developed models. From the results, it was found that the expansion and contraction behaviors predicted by the developed models are matched well with actual expansion and contraction behaviors of Gwangan Bridge. Therefore, it can be concluded that both MRA and ANN models can be used to predict the expansion and contraction behaviors of Gwangan Bridge without actual measurements of those behaviors.

Modeling with Thin Film Thickness using Machine Learning

  • Kim, Dong Hwan;Choi, Jeong Eun;Ha, Tae Min;Hong, Sang Jeen
    • 반도체디스플레이기술학회지
    • /
    • 제18권2호
    • /
    • pp.48-52
    • /
    • 2019
  • Virtual metrology, which is one of APC techniques, is a method to predict characteristics of manufactured films using machine learning with saving time and resources. As the photoresist is no longer a mask material for use in high aspect ratios as the CD is reduced, hard mask is introduced to solve such problems. Among many types of hard mask materials, amorphous carbon layer(ACL) is widely investigated due to its advantages of high etch selectivity than conventional photoresist, high optical transmittance, easy deposition process, and removability by oxygen plasma. In this study, VM using different machine learning algorithms is applied to predict the thickness of ACL and trained models are evaluated which model shows best prediction performance. ACL specimens are deposited by plasma enhanced chemical vapor deposition(PECVD) with four different process parameters(Pressure, RF power, $C_3H_6$ gas flow, $N_2$ gas flow). Gradient boosting regression(GBR) algorithm, random forest regression(RFR) algorithm, and neural network(NN) are selected for modeling. The model using gradient boosting algorithm shows most proper performance with higher R-squared value. A model for predicting the thickness of the ACL film within the abovementioned conditions has been successfully constructed.

Extreme Learning Machine을 이용한 자기부상 물류이송시스템 모델링 (Modeling of Magentic Levitation Logistics Transport System Using Extreme Learning Machine)

  • 이보훈;조재훈;김용태
    • 전자공학회논문지
    • /
    • 제50권1호
    • /
    • pp.269-275
    • /
    • 2013
  • 본 논문에서는 Extreme Learning Machine(ELM)을 이용한 자기부상시스템 모델링 기법을 제안한다. 자기부상시스템의 모델링을 위하여 일반적으로 테일러 급수를 이용한 선형화 모델이 사용되어져 왔으나, 이런 수학적 기법의 경우 자기부상시스템의 비선형 반영에 한계가 있다는 단점을 가지고 있다. 이러한 단점을 극복하기 위해 본 논문에서는 학습시간이 빠른 특성을 가진 ELM을 이용한 자기부상시스템의 모델링 기법을 제안한다. 제안된 기법은 입력 가중치들과 은닉 바이어스들의 초기값을 무작위로 선택하고 출력 가중치들은 Moore-Penrose의 일반화된 역행렬 방법을 통하여 구해진다. 실험을 통하여 제안된 알고리즘이 자기부상시스템의 모델링에서 수학적 기법에 비해 우수한 성능을 보임을 알 수 있었다.

Machine Learning Based Neighbor Path Selection Model in a Communication Network

  • Lee, Yong-Jin
    • International journal of advanced smart convergence
    • /
    • 제10권1호
    • /
    • pp.56-61
    • /
    • 2021
  • Neighbor path selection is to pre-select alternate routes in case geographically correlated failures occur simultaneously on the communication network. Conventional heuristic-based algorithms no longer improve solutions because they cannot sufficiently utilize historical failure information. We present a novel solution model for neighbor path selection by using machine learning technique. Our proposed machine learning neighbor path selection (ML-NPS) model is composed of five modules- random graph generation, data set creation, machine learning modeling, neighbor path prediction, and path information acquisition. It is implemented by Python with Keras on Tensorflow and executed on the tiny computer, Raspberry PI 4B. Performance evaluations via numerical simulation show that the neighbor path communication success probability of our model is better than that of the conventional heuristic by 26% on the average.