• Title/Summary/Keyword: machine learning classification

Search Result 1,462, Processing Time 0.031 seconds

Vegetation classification based on remote sensing data for river management (하천 관리를 위한 원격탐사 자료 기반 식생 분류 기법)

  • Lee, Chanjoo;Rogers, Christine;Geerling, Gertjan;Pennin, Ellis
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.6-7
    • /
    • 2021
  • Vegetation development in rivers is one of the important issues not only in academic fields such as geomorphology, ecology, hydraulics, etc., but also in river management practices. The problem of river vegetation is directly connected to the harmony of conflicting values of flood management and ecosystem conservation. In Korea, since the 2000s, the issue of river vegetation and land formation has been continuously raised under various conditions, such as the regulating rivers downstream of the dams, the small eutrophicated tributary rivers, and the floodplain sites for the four major river projects. In this background, this study proposes a method for classifying the distribution of vegetation in rivers based on remote sensing data, and presents the results of applying this to the Naeseong Stream. The Naeseong Stream is a representative example of the river landscape that has changed due to vegetation development from 2014 to the latest. The remote sensing data used in the study are images of Sentinel 1 and 2 satellites, which is operated by the European Aerospace Administration (ESA), and provided by Google Earth Engine. For the ground truth, manually classified dataset on the surface of the Naeseong Stream in 2016 were used, where the area is divided into eight types including water, sand and herbaceous and woody vegetation. The classification method used a random forest classification technique, one of the machine learning algorithms. 1,000 samples were extracted from 10 pre-selected polygon regions, each half of them were used as training and verification data. The accuracy based on the verification data was found to be 82~85%. The model established through training was also applied to images from 2016 to 2020, and the process of changes in vegetation zones according to the year was presented. The technical limitations and improvement measures of this paper were considered. By providing quantitative information of the vegetation distribution, this technique is expected to be useful in practical management of vegetation such as thinning and rejuvenation of river vegetation as well as technical fields such as flood level calculation and flow-vegetation coupled modeling in rivers.

  • PDF

Subimage Detection of Window Image Using AdaBoost (AdaBoost를 이용한 윈도우 영상의 하위 영상 검출)

  • Gil, Jong In;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.578-589
    • /
    • 2014
  • Window image is displayed through a monitor screen when we execute the application programs on the computer. This includes webpage, video player and a number of applications. The webpage delivers a variety of information by various types in comparison with other application. Unlike a natural image captured from a camera, the window image like a webpage includes diverse components such as text, logo, icon, subimage and so on. Each component delivers various types of information to users. However, the components with different characteristic need to be divided locally, because text and image are served by various type. In this paper, we divide window images into many sub blocks, and classify each divided region into background, text and subimage. The detected subimages can be applied into 2D-to-3D conversion, image retrieval, image browsing and so forth. There are many subimage classification methods. In this paper, we utilize AdaBoost for verifying that the machine learning-based algorithm can be efficient for subimage detection. In the experiment, we showed that the subimage detection ratio is 93.4 % and false alarm is 13 %.

A Study on Method for User Gender Prediction Using Multi-Modal Smart Device Log Data (스마트 기기의 멀티 모달 로그 데이터를 이용한 사용자 성별 예측 기법 연구)

  • Kim, Yoonjung;Choi, Yerim;Kim, Solee;Park, Kyuyon;Park, Jonghun
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.1
    • /
    • pp.147-163
    • /
    • 2016
  • Gender information of a smart device user is essential to provide personalized services, and multi-modal data obtained from the device is useful for predicting the gender of the user. However, the method for utilizing each of the multi-modal data for gender prediction differs according to the characteristics of the data. Therefore, in this study, an ensemble method for predicting the gender of a smart device user by using three classifiers that have text, application, and acceleration data as inputs, respectively, is proposed. To alleviate privacy issues that occur when text data generated in a smart device are sent outside, a classification method which scans smart device text data only on the device and classifies the gender of the user by matching text data with predefined sets of word. An application based classifier assigns gender labels to executed applications and predicts gender of the user by comparing the label ratio. Acceleration data is used with Support Vector Machine to classify user gender. The proposed method was evaluated by using the actual smart device log data collected from an Android application. The experimental results showed that the proposed method outperformed the compared methods.

A Study of Statistical Learning as a CRM s Classifier Functions (CRM의 기능 분류를 위한 통계적 학습에 관한 연구)

  • Jang, Geun;Lee, Jung-Bae;Lee, Byung-Soo
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.71-76
    • /
    • 2004
  • The recent ERP and CRM is mostly focused on the conventional function performances. However, the recent business environment has brought the change in market due to the rapid progress of internet and e-commerce. It is mostly becoming e-business and spreading out as development of the relationship with other cooperating companies, the rapid progress of the relationship with customers, and intensification competitive power through the development of business progress in the organization. CRM(custom relationship management) is a kind of the marketing progress which forms, manages, and intensifies the relationship between the customers and companies to manage the acquired customers and increase the worth of customers for the company. It needs the system base which analyzes the information of customers since it functions on the basis of various information about customers and is linked to the business category such as producing, marketing, and decision making. Since ERP is extending its function to SCM, CRM, and SEM(strategic Enterprise Management), the 21 century s ERP develop as the strategy tool of e-business and, as the mediation for this, will subdivide the functions of CRM effectively by the analogic study of data. Also, to accomplish classification work of the file which in existing becomes accomplished with possibility work with an automatic movement with the user will be able to accomplish a more efficiently work the agent which in order leads the machine studying law, it is one thing with system feature.

The identification of Raman spectra by using linear intensity calibration (선형 강도 교정을 이용한 라만 스펙트럼 인식)

  • Park, Jun-Kyu;Baek, Sung-June;Park, Aaron
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.32-39
    • /
    • 2018
  • Raman spectra exhibit differences in intensity depending on the measuring equipment and environmental conditions even for the same material. This restricts the pattern recognition approach of Raman spectroscopy and is an issue that must be solved for the sake of its practical application, so as to enable the reusability of the Raman database and interoperability between Raman devices. To this end, previous studies assumed the existence of a transfer function between the measurement devices to obtain a direct spectral correction. However, this method cannot cope with other conditions that cause various intensity distortions. Therefore, we propose a classification method using linear intensity calibration which can deal with various measurement conditions more flexibly. In order to evaluate the performance of the proposed method, a Raman library containing 14033 chemical substances was used for identification. Ten kinds of chemical Raman spectra measured using three different Raman spectroscopes were used as the experimental data. The experimental results show that the proposed method achieves 100% discrimination performance against the intensity-distorted spectra and shows a high correlation score for the identified material, thus making it a useful tool for the identification of chemical substances.

Machine Learning Based Automated Source, Sink Categorization for Hybrid Approach of Privacy Leak Detection (머신러닝 기반의 자동화된 소스 싱크 분류 및 하이브리드 분석을 통한 개인정보 유출 탐지 방법)

  • Shim, Hyunseok;Jung, Souhwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.657-667
    • /
    • 2020
  • The Android framework allows apps to take full advantage of personal information through granting single permission, and does not determine whether the data being leaked is actual personal information. To solve these problems, we propose a tool with static/dynamic analysis. The tool analyzes the Source and Sink used by the target app, to provide users with information on what personal information it used. To achieve this, we extracted the Source and Sink through Control Flow Graph and make sure that it leaks the user's privacy when there is a Source-to-Sink flow. We also used the sensitive permission information provided by Google to obtain information from the sensitive API corresponding to Source and Sink. Finally, our dynamic analysis tool runs the app and hooks information from each sensitive API. In the hooked data, we got information about whether user's personal information is leaked through this app, and delivered to user. In this process, an automated Source/Sink classification model was applied to collect latest Source/Sink information, and the we categorized latest release version of Android(9.0) with 88.5% accuracy. We evaluated our tool on 2,802 APKs, and found 850 APKs that leak personal information.

A Technique to Recommend Appropriate Developers for Reported Bugs Based on Term Similarity and Bug Resolution History (개발자 별 버그 해결 유형을 고려한 자동적 개발자 추천 접근법)

  • Park, Seong Hun;Kim, Jung Il;Lee, Eun Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.12
    • /
    • pp.511-522
    • /
    • 2014
  • During the development of the software, a variety of bugs are reported. Several bug tracking systems, such as, Bugzilla, MantisBT, Trac, JIRA, are used to deal with reported bug information in many open source development projects. Bug reports in bug tracking system would be triaged to manage bugs and determine developer who is responsible for resolving the bug report. As the size of the software is increasingly growing and bug reports tend to be duplicated, bug triage becomes more and more complex and difficult. In this paper, we present an approach to assign bug reports to appropriate developers, which is a main part of bug triage task. At first, words which have been included the resolved bug reports are classified according to each developer. Second, words in newly bug reports are selected. After first and second steps, vectors whose items are the selected words are generated. At the third step, TF-IDF(Term frequency - Inverse document frequency) of the each selected words are computed, which is the weight value of each vector item. Finally, the developers are recommended based on the similarity between the developer's word vector and the vector of new bug report. We conducted an experiment on Eclipse JDT and CDT project to show the applicability of the proposed approach. We also compared the proposed approach with an existing study which is based on machine learning. The experimental results show that the proposed approach is superior to existing method.

Building an Analytical Platform of Big Data for Quality Inspection in the Dairy Industry: A Machine Learning Approach (유제품 산업의 품질검사를 위한 빅데이터 플랫폼 개발: 머신러닝 접근법)

  • Hwang, Hyunseok;Lee, Sangil;Kim, Sunghyun;Lee, Sangwon
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.125-140
    • /
    • 2018
  • As one of the processes in the manufacturing industry, quality inspection inspects the intermediate products or final products to separate the good-quality goods that meet the quality management standard and the defective goods that do not. The manual inspection of quality in a mass production system may result in low consistency and efficiency. Therefore, the quality inspection of mass-produced products involves automatic checking and classifying by the machines in many processes. Although there are many preceding studies on improving or optimizing the process using the data generated in the production process, there have been many constraints with regard to actual implementation due to the technical limitations of processing a large volume of data in real time. The recent research studies on big data have improved the data processing technology and enabled collecting, processing, and analyzing process data in real time. This paper aims to propose the process and details of applying big data for quality inspection and examine the applicability of the proposed method to the dairy industry. We review the previous studies and propose a big data analysis procedure that is applicable to the manufacturing sector. To assess the feasibility of the proposed method, we applied two methods to one of the quality inspection processes in the dairy industry: convolutional neural network and random forest. We collected, processed, and analyzed the images of caps and straws in real time, and then determined whether the products were defective or not. The result confirmed that there was a drastic increase in classification accuracy compared to the quality inspection performed in the past.

AdaBoost-based Gesture Recognition Using Time Interval Window Applied Global and Local Feature Vectors with Mono Camera (모노 카메라 영상기반 시간 간격 윈도우를 이용한 광역 및 지역 특징 벡터 적용 AdaBoost기반 제스처 인식)

  • Hwang, Seung-Jun;Ko, Ha-Yoon;Baek, Joong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.471-479
    • /
    • 2018
  • Recently, the spread of smart TV based Android iOS Set Top box has become common. This paper propose a new approach to control the TV using gestures away from the era of controlling the TV using remote control. In this paper, the AdaBoost algorithm is applied to gesture recognition by using a mono camera. First, we use Camshift-based Body tracking and estimation algorithm based on Gaussian background removal for body coordinate extraction. Using global and local feature vectors, we recognized gestures with speed change. By tracking the time interval trajectories of hand and wrist, the AdaBoost algorithm with CART algorithm is used to train and classify gestures. The principal component feature vector with high classification success rate is searched using CART algorithm. As a result, 24 optimal feature vectors were found, which showed lower error rate (3.73%) and higher accuracy rate (95.17%) than the existing algorithm.

Convergence Analysis of Risk factors for Readmission in Cardiovascular Disease: A Machine Learning Approach (의사결정나무분석을 이용한 심혈관질환자의 재입원 위험 요인에 대한 융합적 분석)

  • Kim, Hyun-Su
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.115-123
    • /
    • 2019
  • This is descriptive study to 2nd analysis data KNHANES IV-VI about risk factors of readmission among patients with cardiovascular disease. Among the total 65,973 adults, 1,037 with angina or myocardial infarction were analyzed. The analysis was conducted using SPSS window 21 Program and CHAID decision tree was used in the classification analysis. Root nodes are economic activity(χ2=12.063, p=.001), children's nodes are personal income(χ2=6.575, p=.031), weight change(χ2=12.758, p=.001), residential area(χ2=4.025, p=.045), direct smoking(χ2=3.884, p=.031). p=.049), level of education(χ2=9.630, p=.024). Terminal nodes are hypertension(χ2=3.854, p=.050), diabetes mellitus(χ2=6.056, p=.014), occupation type(χ2=7.799, p=.037). We suggest that the development and operation of programs considering the integrated approach of various factors is necessary for the readmission management of cardiovascular patients.