• 제목/요약/키워드: machine learning classification

검색결과 1,462건 처리시간 0.029초

GPT를 활용한 개인정보 처리방침 안전성 검증 기법 (Safety Verification Techniques of Privacy Policy Using GPT)

  • 심혜연;권민서;윤다영;서지영;이일구
    • 정보보호학회논문지
    • /
    • 제34권2호
    • /
    • pp.207-216
    • /
    • 2024
  • 4차 산업혁명으로 인해 빅데이터가 구축됨에 따라 개인 맞춤형 서비스가 급증했다. 이로 인해 온라인 서비스에서 수집하는 개인정보의 양이 늘어났으며, 사용자들의 개인정보 유출 및 프라이버시 침해 우려가 높아졌다. 온라인 서비스 제공자들은 이용자들의 프라이버시 침해 우려를 해소하기 위해 개인정보 처리방침을 제공하고 있으나, 개인정보 처리방침은 길이가 길고 복잡하여 이용자가 직접 위험 항목을 파악하기 어려운 문제로 인해 오남용되는 경우가 많다. 따라서 자동으로 개인정보 처리방침이 안전한지 여부를 검사할 수 있는 방법이 필요하다. 그러나 종래의 블랙리스트 및 기계학습 기반의 개인정보 처리방침 안전성 검증 기법은 확장이 어렵거나 접근성이 낮은 문제가 있다. 본 논문에서는 문제를 해결하기위해 생성형 인공지능인 GPT-3.5 API를 이용한 개인정보 처리방침 안전성 검증 기법을 제안한다. 새로운 환경에서도 분류 작업을 수행할 수 있고, 전문 지식이 없는 일반인이 쉽게 개인정보 처리방침을 검사할 수 있다는 가능성을 보인다. 실험에서는 블랙리스트 기반 개인정보 처리방침과 GPT 기반 개인정보 처리방침이 안전한 문장과 안전하지 않은 문장의 분류를 얼마나 정확하게 하는지와 분류에 소요된 시간을 측정했다. 실험 결과에 따르면, 제안하는 기법은 종래의 블랙리스트 기반 문장 안전성 검증 기법보다 평균적으로 10.34% 높은 정확도를 보였다.

2023 Survey on User Experience of Artificial Intelligence Software in Radiology by the Korean Society of Radiology

  • Eui Jin Hwang;Ji Eun Park;Kyoung Doo Song;Dong Hyun Yang;Kyung Won Kim;June-Goo Lee;Jung Hyun Yoon;Kyunghwa Han;Dong Hyun Kim;Hwiyoung Kim;Chang Min Park;Radiology Imaging Network of Korea for Clinical Research (RINK-CR)
    • Korean Journal of Radiology
    • /
    • 제25권7호
    • /
    • pp.613-622
    • /
    • 2024
  • Objective: In Korea, radiology has been positioned towards the early adoption of artificial intelligence-based software as medical devices (AI-SaMDs); however, little is known about the current usage, implementation, and future needs of AI-SaMDs. We surveyed the current trends and expectations for AI-SaMDs among members of the Korean Society of Radiology (KSR). Materials and Methods: An anonymous and voluntary online survey was open to all KSR members between April 17 and May 15, 2023. The survey was focused on the experiences of using AI-SaMDs, patterns of usage, levels of satisfaction, and expectations regarding the use of AI-SaMDs, including the roles of the industry, government, and KSR regarding the clinical use of AI-SaMDs. Results: Among the 370 respondents (response rate: 7.7% [370/4792]; 340 board-certified radiologists; 210 from academic institutions), 60.3% (223/370) had experience using AI-SaMDs. The two most common use-case of AI-SaMDs among the respondents were lesion detection (82.1%, 183/223), lesion diagnosis/classification (55.2%, 123/223), with the target imaging modalities being plain radiography (62.3%, 139/223), CT (42.6%, 95/223), mammography (29.1%, 65/223), and MRI (28.7%, 64/223). Most users were satisfied with AI-SaMDs (67.6% [115/170, for improvement of patient management] to 85.1% [189/222, for performance]). Regarding the expansion of clinical applications, most respondents expressed a preference for AI-SaMDs to assist in detection/diagnosis (77.0%, 285/370) and to perform automated measurement/quantification (63.5%, 235/370). Most respondents indicated that future development of AI-SaMDs should focus on improving practice efficiency (81.9%, 303/370) and quality (71.4%, 264/370). Overall, 91.9% of the respondents (340/370) agreed that there is a need for education or guidelines driven by the KSR regarding the use of AI-SaMDs. Conclusion: The penetration rate of AI-SaMDs in clinical practice and the corresponding satisfaction levels were high among members of the KSR. Most AI-SaMDs have been used for lesion detection, diagnosis, and classification. Most respondents requested KSR-driven education or guidelines on the use of AI-SaMDs.

땅밀림 실태조사 우려지 판정에서의 주요 산지환경 인자 분석 (Identifying Main Forest Environmental Factors to Discern Slow-Moving Landslide-Prone Areas in the Republic of Korea)

  • 김동엽;윤상후;임상준;서정일;봉태호
    • 한국산림과학회지
    • /
    • 제113권3호
    • /
    • pp.349-360
    • /
    • 2024
  • 이 연구는 2019~2021년 3년 동안 실시된 땅밀림 실태조사 자료를 기반으로 국내 땅밀림 우려지 판정에 영향을 미치는 주요 산지환경 인자를 분석하고자 하였다. 총 256개소의 현장조사 야장자료에서 지질, 토양, 지형 등 7개 분야 총 29개 산지환경 인자의 특성값을 수집하였으며, 기계학습모형의 구축 과정 중 분류 정확도가 높은 것으로 평가된 랜덤포레스트(AUC=0.910) 및 XGBoost(Accuracy=0.808, Kappa=0.594, F1-measure=0.494) 모형을 활용하여 분석을 수행하였다. 그 결과, 분류 중요도를 나타내는 MDG(Mean Decrease Gini)가 높게 산출된 균열유무(두 모형의 평균 MDG 22.1), 최대고도(14.8), 단차유무(7.0) 등이 땅밀림 우려지 판정에 중요한 영향 인자로 나타났다. 균열유무와 단차유무는 땅밀림 발생 특성과 잘 합치하여 향후 땅밀림 실태조사에서의 중요성이 더 강화되어야 할 것으로 판단되었다. 하지만, 최대고도의 영향력은 분석에 사용된 입력자료의 특성으로 인하여 다소 과대평가된 것으로 생각되었다. 이러한 결과를 통해 땅밀림 실태조사에서의 최종 판정의 정확성과 효율성을 더욱 향상시킬 수 있을 것으로 기대되었다.

Random Forest 기법을 이용한 도심지 MT 시계열 자료의 차량 잡음 분류 (Classification of Transport Vehicle Noise Events in Magnetotelluric Time Series Data in an Urban area Using Random Forest Techniques)

  • 권형석;류경호;심익현;이춘기;오석훈
    • 지구물리와물리탐사
    • /
    • 제23권4호
    • /
    • pp.230-242
    • /
    • 2020
  • 201 6년 9월에 발생한 경주지진원 구역에 대한 정밀 지질구조 규명을 위해 MT 탐사를 적용하였다. 경주지역의 MT 측정자료는 조사지역 인근의 지하철, 전력선, 공장, 주택, 농경지에서 발생된 전기적 잡음과 철도, 도로에서의 차량잡음 등으로 인해 측정자료 왜곡이 심하게 발생되었다. 이 연구에서는 고속철도 및 고속도로와 인접한 4개소의 MT 탐사자료에 기계학습 기법을 적용하여 차량잡음이 포함된 시계열을 분류하였다. 고속열차 잡음이 포함된 시계열에 대해서는 확률적 경사 하강법, 서포트 벡터 머신과 랜덤 포레스트 3가지의 분류모델을 적용하여 그 결과를 비교하였다. 대형트럭 잡음이 포함된 시계열 자료에 대해서는 Hx 성분, Hy 성분과 Hx & Hy 합성성분 크기에 대한 3가지의 샘플 자료를 준비하였으며 랜덤 포레스트 분류모델을 구성하여 그 성능을 평가하였다. 마지막으로 차량잡음 제거 효과 분석을 위하여 차량잡음 제거 전후의 시계열, 진폭 스펙트럼과 겉보기비저항 곡선을 비교하였으며, 이를 통해 차량잡음이 영향을 미치는 주파수 대역과 차량잡음 제거 시 발생될 수 있는 문제점에 대해 고찰하였다.

저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식 (Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest)

  • 허두영;김상준;곽충섭;남재열;고병철
    • 방송공학회논문지
    • /
    • 제22권3호
    • /
    • pp.282-294
    • /
    • 2017
  • 본 논문에서는 차량이 움직일 때 발생하는 카메라의 움직임, 도로상의 광원에 강건한 지능형 전조등 제어 시스템을 제안한다. 후보광원을 검출할 때 카메라의 원근 범위 추정 모델을 기반으로 한 ROI (Region of Interest)를 사용하며 이는 FROI (Front ROI)와 BROI (Back ROI)로 나뉘어 사용된다. ROI내에서 차량의 전조등과 후미등, 반사광 및 주변 도로의 조명들은 2개의 적응적 임계값에 의해 세그먼트화 된다. 세그먼트화 된 광원 후보군들로부터 후미등은 적색도(redness)와 Haar-like특징에 기반한 랜덤포레스트 분류기에 의해 검출된다. 전조등과 후미등 분류 과정에서 빠른 학습과 실시간 처리를 위해 SVM(Support Vector Machine) 또는 CNN(Convolutional Neural Network)을 사용하지 않고 랜덤포레스트 분류기를 사용했다. 마지막으로 페어링(Pairing) 단계에서는 수직좌표 유사성, 광원들간의 연관성 검사와 같은 사전 정의된 규칙을 적용한다. 제안된 알고리즘은 다양한 야간 운전환경을 포함하는 데이터에 적용한 결과, 최근의 관련연구 보다 향상된 검출 성능을 보여주었다.

디지털 영상의 픽셀값 경사도에 의한 미디언 필터링 포렌식 판정 (Forensic Decision of Median Filtering by Pixel Value's Gradients of Digital Image)

  • 이강현
    • 전자공학회논문지
    • /
    • 제52권6호
    • /
    • pp.79-84
    • /
    • 2015
  • 디지털 영상의 배포에서, 위 변조자에 의해 영상이 변조되는 심각한 문제가 있다. 이러한 문제를 해결하기 위하여, 본 논문에서는 영상의 픽셀값 경사도에 따른 특징벡터를 이용한 미디언 필터링 영상 포렌식 판정 알고리즘을 제안한다. 제안된 알고리즘에서, 원영상의 픽셀값 경사도로부터 자기회귀 계수를 1~6차까지의 6 Dim.을 계산한다. 그리고 경사도를 Poisson 방정식의 해에 의한 재구성 영상과 원영상과의 차영상으로 부터, 4 Dim. (평균값, 최대값 그리고 최대값의 좌표 i,j)의 특징벡터를 추출한다. 2 종류의 특징벡터는 10 Dim.으로 조합되어 변조된 영상의 미디언 필터링 (Median Filtering: MF) 검출기의 SVM (Support Vector Machine) 분류를 위한 학습에 사용된다. 제안된 미디언 필터링 검출 알고리즘은 동일 10 Dim. 특징벡터의 MFR (Median Filter Residual) 스킴과 비교하여 원영상, 평균필터링 ($3{\times}3$) 영상 그리고 JPEG (QF=90) 영상에서는 성능이 우수하며, Gaussian 필터링 ($3{\times}3$) 영상에서는 성능이 다소 낮지만, 성능평가 전체항목에서 민감도 (Sensitivity; TP: True Positive rate)와 1-특이도 (1-Specificity; FP: False Positive rate)의 AUC (Area Under Curve)가 모두 1에 수렴하여 'Excellent (A)' 등급임을 확인하였다.

감성판별을 위한 생체신호기반 특징선택 분류기 설계 (The Design of Feature Selection Classifier based on Physiological Signal for Emotion Detection)

  • 이지은;유선국
    • 전자공학회논문지
    • /
    • 제50권11호
    • /
    • pp.206-216
    • /
    • 2013
  • 감성은 학습, 행동, 의사결정, 상호대화를 포함한 인간의 일상생활에 중요한 요소이다. 본 논문에서는 시스템의 복잡도를 줄이기 위하여 생체신호로부터 최소한의 중요한 특징만을 추출하여 사용하는 감성 분류기를 설계하고자 한다. 생체신호는 맥파, 피부온도, 피부전도도, 뇌파신호(전두엽, 두정엽)를 사용하였으며, 4가지 감정(보통, 슬픔, 공포, 행복)은 영화 관람을 통하여 유도하였다. 측정한 생체신호로부터 추출한 24개의 특징으로부터 최적의 특징 집합의 결정은 서포트벡터머신 기반 적합도 함수를 사용하는 유전알고리즘을 적용하였다. 최적의 4감정 분류 정확도는 96.4%이었으며, 서포트벡터머신만을 사용하였을 경우보다 17% 높았다. 선택된 최소에러 특징은 맥파 심박변이도의 평균, NN50, 맥파 유도 맥파 전달 시간의 평균, 피부전도도의 평균과 두정엽 뇌파의 ${\delta}$, ${\beta}$ 주파수 대역에너지였다. 실험을 통하여 두정엽 뇌파, 맥파, 피부전도도의 조합이 고정밀 감정 장비에 적합하였으며, 79% 성능을 보인 맥파와 피부전도도의 조합이 간단한 감성장비에 적절하게 적용할 수 있다.

WUDAPT 절차를 활용한 창원시의 국지기후대 제작과 필터링 반경에 따른 비교 연구 (A Comparative Study on Mapping and Filtering Radii of Local Climate Zone in Changwon city using WUDAPT Protocol)

  • 김태경;박경훈;송봉근;김성현;정다은;박건웅
    • 한국지리정보학회지
    • /
    • 제27권2호
    • /
    • pp.78-95
    • /
    • 2024
  • 기후변화와 도시 문제를 고려해 다양한 영역에 걸친 환경계획의 수립과 비교를 위해서는 일관된 기준으로 분류된 지역 규모 수준의 공간자료 구축이 중요하다. 본 연구는 World Urban Database and Access Portal Tools(WUDAPT)에서 제시한 절차를 사용하여 기후 및 환경 연구가 활발히 이루어지고 있는 창원시의 Local Climate Zone(LCZ)를 분류하였다. 또한, 동질적인 기후 특성을 가진 지역일지라도 일부 격자가 다른 기후 특성으로 분류되는 파편화 문제를 개선하기 위해 필터링 기법을 적용하고 필터링 반경에 따른 LCZ 분류 특성을 비교하였다. 위성영상과 지상참조자료, 감독분류 머신러닝 기법인 Random Forest를 활용하여 필터링하지 않은 분류지도와 필터링 반경이 1, 2, 3인 분류지도를 제작하여 정확도를 비교하였다. 또한, 도시지역의 건물 유형에 따른 LCZ 분류특성을 비교하기 위해 GIS를 활용한 분류방법론에서 사용되는 도시형태지수를 제작하여 선행 연구에서 제시한 범위와 비교하였다. 그 결과, 전체 정확도는 필터링 반경이 1일 때 가장 높은 값을 보였다. 도시형태지수를 비교하였을 때 LCZ 유형별 차이는 적었고 대부분 선행연구의 범위를 만족하는 것을 확인하였다. 그러나 연구 결과를 통해 건물의 높이 정보를 반영하지 못하는 한계를 확인하였고, 이를 보완할 수 있는 데이터를 추가하여 분류한다면 더 높은 정확도의 결과물을 획득할 수 있을 것이라 판단된다. 연구 결과는 국내 도시기후 관련 환경 연구분야의 기초 공간자료 제작하기 위한 참고자료로 활용될 수 있을 것이다.

텍스트 마이닝을 활용한 지역 특성 기반 도시재생 유형 추천 시스템 제안 (Suggestion of Urban Regeneration Type Recommendation System Based on Local Characteristics Using Text Mining)

  • 김익준;이준호;김효민;강주영
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.149-169
    • /
    • 2020
  • 현 정부의 주요 국책사업 중 하나인 도시재생 뉴딜사업은 매년 100 곳씩, 5년간 500곳을대상으로 50조를 투자하여 낙후된 지역을 개발하는 것으로 언론과 지자체의 높은 이목이 집중되고 있다. 그러나, 현재 이 사업모델은 면적 규모에 따라 "우리동네 살리기, 주거정비지원형, 일반근린형, 중심시가지형, 경제기반형" 등 다섯 가지로 나뉘어 추진되어 그 지역 본래의 특성을 반영하지 못하고 있다. 국내 도시재생 성공 키워드는 "주민 참여", "지역특화" "부처협업", "민관협력"이다. 성공 키워드에 따르면 지자체에서 정부에게 도시재생 사업을 제안할 때 지역주민, 민간기업의 도움과 함께 도시의 특성을 정확히 이해하고 도시의 특성에 어울리는 방향으로 사업을 추진하는 것이 가장 중요하다는 것을 알 수 있다. 또한 도시재생 사업 후 발생하는 부작용 중 하나인 젠트리피케이션 문제를 고려하면 그 지역 특성에 맞는 도시재생 유형을 선정하여 추진하는 것이 중요하다. 이에 본 연구는 '도시재생 뉴딜 사업' 방법론의 한계점을 보완하기 위해, 기존 서울시가 지역 특성에 기반하여 추진하고 있는 "2025 서울시 도시재생 전략계획"의 도시재생 유형을 참고하여 도시재생 사업지에 맞는 도시재생 유형을 추천하는 시스템을 머신러닝 알고리즘을 활용하여 제안하고자 한다. 서울시 도시재생 유형은 "저이용저개발, 쇠퇴낙후, 노후주거, 역사문화자원 특화" 네 가지로 분류된다 (Shon and Park, 2017). 지역 특성을 파악하기 위해 총 4가지 도시재생 유형에 대해 사업이 진행된 22개의 지역에 대한 뉴스 미디어 10만여건의 텍스트 데이터를 수집하였다. 수집된 텍스트를 이용하여 도시재생 유형에 따른 지역별 주요 키워드를 도출하고 토픽모델링을 수행하여 유형별 차이가 있는 지 탐색해 보았다. 다음 단계로 주어진 텍스트를 기반으로 도시재생 유형을 추천하는 추천시스템 구축을 위해 텍스트 데이터를 벡터로 변환하여 머신러닝 분류모델을 개발하였고, 이를 검증한 결과 97% 정확도를 보였다. 따라서 본 연구에서 제안하는 추천 시스템은 도시재생 사업을 진행하는 과정에서 신규 사업지의 지역 특성에 기반한 도시재생 유형을 추천할 수 있을 것으로 기대된다.

전통문화 이미지를 위한 세부 자질 주목형 이미지 자동 분석기 (Detail Focused Image Classifier Model for Traditional Images)

  • 김규경;허윤아;김경민;유원희;임희석
    • 한국융합학회논문지
    • /
    • 제8권12호
    • /
    • pp.85-92
    • /
    • 2017
  • 이 논문에서는 최근 전통문화의 늘어나는 콘텐츠와 대조적으로 전통문화에 대한 접근성이 떨어지는 점에 주목하여 이러한 콘텐츠의 접근성의 향상을 위해 지속된 관리와 연구를 위하여 전통문화 이미지를 위한 이미지 자동 분석기를 소개한다. 이 논문에서 소개하는 이미지 자동 분석기는 인공신경망을 기반으로 입력 이미지의 자질들을 벡터스페이스로 변환하여 이를 RNN 기반의 모델을 통하여 세부 자질들을 파악하여 전통문화 이미지의 분류를 행한다. 이러한 방법을 통하여 전체적으로 비슷하게 보이는 전통문화 이미지들의 분류를 가능케 한다. 해당 모델의 훈련을 위하여 한민족정보문화마당 기반의 형식을 토대로 넓은 폭의 이미지 데이터를 수집 및 정리하여 차후 전통문화 이미지 관련 분야에서 사용할 수 있는 데이터셋의 구축에 기여를 하였다. 또한 이러한 연구가 최종적으로 전통문화와 관련된 수요, 공급 및 연구가 한층 더 활발해지는 것에 기여를 한다.