• Title/Summary/Keyword: machine learning applications

Search Result 538, Processing Time 0.042 seconds

Axial load prediction in double-skinned profiled steel composite walls using machine learning

  • G., Muthumari G;P. Vincent
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.739-754
    • /
    • 2024
  • This study presents an innovative AI-driven approach to assess the ultimate axial load in Double-Skinned Profiled Steel sheet Composite Walls (DPSCWs). Utilizing a dataset of 80 entries, seven input parameters were employed, and various AI techniques, including Linear Regression, Polynomial Regression, Support Vector Regression, Decision Tree Regression, Decision Tree with AdaBoost Regression, Random Forest Regression, Gradient Boost Regression Tree, Elastic Net Regression, Ridge Regression, and LASSO Regression, were evaluated. Decision Tree Regression and Random Forest Regression emerged as the most accurate models. The top three performing models were integrated into a hybrid approach, excelling in accurately estimating DPSCWs' ultimate axial load. This adaptable hybrid model outperforms traditional methods, reducing errors in complex scenarios. The validated Artificial Neural Network (ANN) model showcases less than 1% error, enhancing reliability. Correlation analysis highlights robust predictions, emphasizing the importance of steel sheet thickness. The study contributes insights for predicting DPSCW strength in civil engineering, suggesting optimization and database expansion. The research advances precise load capacity estimation, empowering engineers to enhance construction safety and explore further machine learning applications in structural engineering.

Option pricing and profitability: A comprehensive examination of machine learning, Black-Scholes, and Monte Carlo method

  • Sojin Kim;Jimin Kim;Jongwoo Song
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.5
    • /
    • pp.585-599
    • /
    • 2024
  • Options pricing remains a critical aspect of finance, dominated by traditional models such as Black-Scholes and binomial tree. However, as market dynamics become more complex, numerical methods such as Monte Carlo simulation are accommodating uncertainty and offering promising alternatives. In this paper, we examine how effective different options pricing methods, from traditional models to machine learning algorithms, are at predicting KOSPI200 option prices and maximizing investment returns. Using a dataset of 2023, we compare the performance of models over different time frames and highlight the strengths and limitations of each model. In particular, we find that machine learning models are not as good at predicting prices as traditional models but are adept at identifying undervalued options and producing significant returns. Our findings challenge existing assumptions about the relationship between forecast accuracy and investment profitability and highlight the potential of advanced methods in exploring dynamic financial environments.

Wine Quality Prediction by Using Backward Elimination Based on XGBoosting Algorithm

  • Umer Zukaib;Mir Hassan;Tariq Khan;Shoaib Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.31-42
    • /
    • 2024
  • Different industries mostly rely on quality certification for promoting their products or brands. Although getting quality certification, specifically by human experts is a tough job to do. But the field of machine learning play a vital role in every aspect of life, if we talk about quality certification, machine learning is having a lot of applications concerning, assigning and assessing quality certifications to different products on a macro level. Like other brands, wine is also having different brands. In order to ensure the quality of wine, machine learning plays an important role. In this research, we use two datasets that are publicly available on the "UC Irvine machine learning repository", for predicting the wine quality. Datasets that we have opted for our experimental research study were comprised of white wine and red wine datasets, there are 1599 records for red wine and 4898 records for white wine datasets. The research study was twofold. First, we have used a technique called backward elimination in order to find out the dependency of the dependent variable on the independent variable and predict the dependent variable, the technique is useful for predicting which independent variable has maximum probability for improving the wine quality. Second, we used a robust machine learning algorithm known as "XGBoost" for efficient prediction of wine quality. We evaluate our model on the basis of error measures, root mean square error, mean absolute error, R2 error and mean square error. We have compared the results generated by "XGBoost" with the other state-of-the-art machine learning techniques, experimental results have showed, "XGBoost" outperform as compared to other state of the art machine learning techniques.

A Study on Learning Mathematics for Machine Learning

  • Jun, Sang Pyo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.257-263
    • /
    • 2019
  • This paper is a study on mathematical aspects that can be basic for understanding and applying the contents of machine learning. If you are familiar with mathematics in the field of computer science, you can create algorithms that can diversify researches and implement them faster, so you can implement many real-life ideas. There is no curriculum standard for mathematics in the field of machine learning, and there are many absolutely lacking mathematical contents that are taught in the curriculum presented at existing universities. Machine learning now includes speech recognition systems, search engines, automatic driving systems, process automation, object recognition, and more. Many applications that you want to implement combine a large amount of data with many variables into the components that the programmer generates. In this course, the mathematical areas required for computer engineer (CS) practitioners and computer engineering educators have become diverse and complex. It is important to analyze the mathematical content required by engineers and educators and the mathematics required in the field. This paper attempts to present an effective range design for the essential processes from the basic education content to the deepening education content for the development of many researches.

A Novel Feature Selection Approach to Classify Breast Cancer Drug using Optimized Grey Wolf Algorithm

  • Shobana, G.;Priya, N.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.258-270
    • /
    • 2022
  • Cancer has become a common disease for the past two decades throughout the globe and there is significant increase of cancer among women. Breast cancer and ovarian cancers are more prevalent among women. Majority of the patients approach the physicians only during their final stage of the disease. Early diagnosis of cancer remains a great challenge for the researchers. Although several drugs are being synthesized very often, their multi-benefits are less investigated. With millions of drugs synthesized and their data are accessible through open repositories. Drug repurposing can be done using machine learning techniques. We propose a feature selection technique in this paper, which is novel that generates multiple populations for the grey wolf algorithm and classifies breast cancer drugs efficiently. Leukemia drug dataset is also investigated and Multilayer perceptron achieved 96% prediction accuracy. Three supervised machine learning algorithms namely Random Forest classifier, Multilayer Perceptron and Support Vector Machine models were applied and Multilayer perceptron had higher accuracy rate of 97.7% for breast cancer drug classification.

A Review of Deep Learning Research

  • Mu, Ruihui;Zeng, Xiaoqin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1738-1764
    • /
    • 2019
  • With the advent of big data, deep learning technology has become an important research direction in the field of machine learning, which has been widely applied in the image processing, natural language processing, speech recognition and online advertising and so on. This paper introduces deep learning techniques from various aspects, including common models of deep learning and their optimization methods, commonly used open source frameworks, existing problems and future research directions. Firstly, we introduce the applications of deep learning; Secondly, we introduce several common models of deep learning and optimization methods; Thirdly, we describe several common frameworks and platforms of deep learning; Finally, we introduce the latest acceleration technology of deep learning and highlight the future work of deep learning.

Emerging Machine Learning in Wearable Healthcare Sensors

  • Gandha Satria Adi;Inkyu Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.378-385
    • /
    • 2023
  • Human biosignals provide essential information for diagnosing diseases such as dementia and Parkinson's disease. Owing to the shortcomings of current clinical assessments, noninvasive solutions are required. Machine learning (ML) on wearable sensor data is a promising method for the real-time monitoring and early detection of abnormalities. ML facilitates disease identification, severity measurement, and remote rehabilitation by providing continuous feedback. In the context of wearable sensor technology, ML involves training on observed data for tasks such as classification and regression with applications in clinical metrics. Although supervised ML presents challenges in clinical settings, unsupervised learning, which focuses on tasks such as cluster identification and anomaly detection, has emerged as a useful alternative. This review examines and discusses a variety of ML algorithms such as Support Vector Machines (SVM), Random Forests (RF), Decision Trees (DT), Neural Networks (NN), and Deep Learning for the analysis of complex clinical data.

Processing large-scale data with Apache Spark (Apache Spark를 활용한 대용량 데이터의 처리)

  • Ko, Seyoon;Won, Joong-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.6
    • /
    • pp.1077-1094
    • /
    • 2016
  • Apache Spark is a fast and general-purpose cluster computing package. It provides a new abstraction named resilient distributed dataset, which is capable of support for fault tolerance while keeping data in memory. This type of abstraction results in a significant speedup compared to legacy large-scale data framework, MapReduce. In particular, Spark framework is suitable for iterative machine learning applications such as logistic regression and K-means clustering, and interactive data querying. Spark also supports high level libraries for various applications such as machine learning, streaming data processing, database querying and graph data mining thanks to its versatility. In this work, we introduce the concept and programming model of Spark as well as show some implementations of simple statistical computing applications. We also review the machine learning package MLlib, and the R language interface SparkR.

Classifying Windows Executables using API-based Information and Machine Learning (API 정보와 기계학습을 통한 윈도우 실행파일 분류)

  • Cho, DaeHee;Lim, Kyeonghwan;Cho, Seong-je;Han, Sangchul;Hwang, Young-sup
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1325-1333
    • /
    • 2016
  • Software classification has several applications such as copyright infringement detection, malware classification, and software automatic categorization in software repositories. It can be also employed by software filtering systems to prevent the transmission of illegal software. If illegal software is identified by measuring software similarity in software filtering systems, the average number of comparisons can be reduced by shrinking the search space. In this study, we focused on the classification of Windows executables using API call information and machine learning. We evaluated the classification performance of machine learning-based classifier according to the refinement method for API information and machine learning algorithm. The results showed that the classification success rate of SVM (Support Vector Machine) with PolyKernel was higher than other algorithms. Since the API call information can be extracted from binary executables and machine learning-based classifier can identify tampered executables, API call information and machine learning-based software classifiers are suitable for software filtering systems.

Human Face Recognition using Multi-Class Projection Extreme Learning Machine

  • Xu, Xuebin;Wang, Zhixiao;Zhang, Xinman;Yan, Wenyao;Deng, Wanyu;Lu, Longbin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.6
    • /
    • pp.323-331
    • /
    • 2013
  • An extreme learning machine (ELM) is an efficient learning algorithm that is based on the generalized single, hidden-layer feed-forward networks (SLFNs), which perform well in classification applications. Many studies have demonstrated its superiority over the existing classical algorithms: support vector machine (SVM) and BP neural network. This paper presents a novel face recognition approach based on a multi-class project extreme learning machine (MPELM) classifier and 2D Gabor transform. First, all face image features were extracted using 2D Gabor filters, and the MPELM classifier was used to determine the final face classification. Two well-known face databases (CMU-PIE and ORL) were used to evaluate the performance. The experimental results showed that the MPELM-based method outperformed the ELM-based method as well as other methods.

  • PDF