• Title/Summary/Keyword: machine learning applications

Search Result 538, Processing Time 0.025 seconds

Artificial Intelligence for Neurosurgery : Current State and Future Directions

  • Sung Hyun Noh;Pyung Goo Cho;Keung Nyun Kim;Sang Hyun Kim;Dong Ah Shin
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.2
    • /
    • pp.113-120
    • /
    • 2023
  • Artificial intelligence (AI) is a field of computer science that equips machines with human-like intelligence and enables them to learn, reason, and solve problems when presented with data in various formats. Neurosurgery is often at the forefront of innovative and disruptive technologies, which have similarly altered the course of acute and chronic diseases. In diagnostic imaging, such as X-rays, computed tomography, and magnetic resonance imaging, AI is used to analyze images. The use of robots in the field of neurosurgery is also increasing. In neurointensive care units, AI is used to analyze data and provide care to critically ill patients. Moreover, AI can be used to predict a patient's prognosis. Several AI applications have already been introduced in the field of neurosurgery, and many more are expected in the near future. Ultimately, it is our responsibility to keep pace with this evolution to provide meaningful outcomes and personalize each patient's care. Rather than blindly relying on AI in the future, neurosurgeons should gain a thorough understanding of it and use it to enhance their patient care.

A Prediction Model for studying the Impact of Separated Families on Students using Decision Tree

  • Ourida Ben boubaker;Ines Hosni;Hala Elhadidy
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.79-84
    • /
    • 2023
  • Social studies show that the number of separated families have lately increased due to different reasons. Despite the causes for family rift, many problems are resulted which affected the children physically and psychologically. This effect may cause them fail in their life especially at school. This paper focuses on the negative reaction of the parents' separation with other factors from the computer science prospective. Since the artificial intelligent field is the most common widespread in computer science, a predictive model is built to predict if a specific child whose parents separated, may complete the school successfully or fail to continue his education. This will be done using Decision Tree that have proved their effectiveness on the predication applications. As an experiment, a sample of individuals is randomly chosen and applied on our prediction model. As a result, this model shows that the separation may cause the child success at school if other factors are satisfied; the intelligent of the guardian, the relation between the parents after the separation, his age at the separation time, etc.

KI Cloud: Design and Implementation of BigData Analysis and Machine Learning Applications on Supercomputer (KI Cloud: 슈퍼컴퓨터를 통한 빅데이터 분석 및 머신 러닝 서비스 구축 방안)

  • Park, Ju-Won;Lee, Seungmin;Jeong, Kimoon;Hong, TaeYoung
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.80-82
    • /
    • 2020
  • 전통적으로 기초 과학 분야의 대규모 워크로드 작업들은 슈퍼컴퓨터와 같은 대용량 클러스터 시스템을 이용하여 수행해왔다. 그러나 최근 빅데이터 및 머신 러닝과 같은 새로운 분야에서의 컴퓨팅 자원 요구가 증가하고 기존 사용자의 요구 사항도 다양해짐에 따라 기존의 클러스터 시스템 운영 환경에서는 많은 어려움이 나타나고 있다. 이러한 문제를 해결하기 위해 한국과학기술정보연구원(KISTI)에서는 지난 3 월부터 KI (KISTI Intelligent) Cloud 서비스를 개발하여 서비스를 제공하고 있다. KI Cloud 서비스는 다음과 같은 특징이 있다. 첫째, Jupyter 과 RStudio 와 같은 대화형 개발 환경을 웹을 통해 제공함으로써 사용자는 언제, 어디서나 손쉽게 서비스를 활용할 수 있다. 둘째, 컨테이너 기술을 활용하여 사용자가 요구하는 개발 및 실행 환경을 실시간으로 구성하여 제공한다. 셋째, 사용자의 서비스 환경을 동적으로 구성하여 제공함으로써 컴퓨팅 자원의 효율성을 높일 수 있다.

Integrating a Machine Learning-based Space Classification Model with an Automated Interior Finishing System in BIM Models

  • Ha, Daemok;Yu, Youngsu;Choi, Jiwon;Kim, Sihyun;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.4
    • /
    • pp.60-73
    • /
    • 2023
  • The need for adopting automation technologies to improve inefficiencies in interior finishing modeling work is increasing during the Building Information Modeling (BIM) design stage. As a result, the use of visual programming languages (VPL) for practical applications is growing. However, undefined or incorrect space designations in BIM models can hinder the development of automated finishing modeling processes, resulting in erroneous corrections and rework. To address this challenge, this study first developed a rule-based automated interior finishing detailing module for floors, walls, and ceilings. In addition, an automated space integrity checking module with 86.69% ACC using the Multi-Layer Perceptron (MLP) model was developed. These modules were integrated into a design automation module for interior finishing, which was then verified for practical utility. The results showed that the automation module reduced the time required for modeling and integrity checking by 97.6% compared to manual work, confirming its utility in assisting BIM model development for interior finishing works.

Counterfactual image generation by disentangling data attributes with deep generative models

  • Jieon Lim;Weonyoung Joo
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.589-603
    • /
    • 2023
  • Deep generative models target to infer the underlying true data distribution, and it leads to a huge success in generating fake-but-realistic data. Regarding such a perspective, the data attributes can be a crucial factor in the data generation process since non-existent counterfactual samples can be generated by altering certain factors. For example, we can generate new portrait images by flipping the gender attribute or altering the hair color attributes. This paper proposes counterfactual disentangled variational autoencoder generative adversarial networks (CDVAE-GAN), specialized for data attribute level counterfactual data generation. The structure of the proposed CDVAE-GAN consists of variational autoencoders and generative adversarial networks. Specifically, we adopt a Gaussian variational autoencoder to extract low-dimensional disentangled data features and auxiliary Bernoulli latent variables to model the data attributes separately. Also, we utilize a generative adversarial network to generate data with high fidelity. By enjoying the benefits of the variational autoencoder with the additional Bernoulli latent variables and the generative adversarial network, the proposed CDVAE-GAN can control the data attributes, and it enables producing counterfactual data. Our experimental result on the CelebA dataset qualitatively shows that the generated samples from CDVAE-GAN are realistic. Also, the quantitative results support that the proposed model can produce data that can deceive other machine learning classifiers with the altered data attributes.

The Regulation of AI: Striking the Balance Between Innovation and Fairness

  • Kwang-min Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.9-22
    • /
    • 2023
  • In this paper, we propose a balanced approach to AI regulation, focused on harnessing the potential benefits of artificial intelligence while upholding fairness and ethical responsibility. With the increasing integration of AI systems into daily life, it is essential to develop regulations that prevent harmful biases and the unfair disadvantage of certain demographics. Our approach involves analyzing regulatory frameworks and case studies in AI applications to ensure responsible development and application. We aim to contribute to ongoing discussions around AI regulation, helping to establish policies that balance innovation with fairness, thereby driving economic progress and societal advancement in the age of artificial intelligence.

Enhancing Internet of Things Security with Random Forest-Based Anomaly Detection

  • Ahmed Al Shihimi;Muhammad R Ahmed;Thirein Myo;Badar Al Baroomi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.67-76
    • /
    • 2024
  • The Internet of Things (IoT) has revolutionized communication and device operation, but it has also brought significant security challenges. IoT networks are structured into four levels: devices, networks, applications, and services, each with specific security considerations. Personal Area Networks (PANs), Local Area Networks (LANs), and Wide Area Networks (WANs) are the three types of IoT networks, each with unique security requirements. Communication protocols such as Wi-Fi and Bluetooth, commonly used in IoT networks, are susceptible to vulnerabilities and require additional security measures. Apart from physical security, authentication, encryption, software vulnerabilities, DoS attacks, data privacy, and supply chain security pose significant challenges. Ensuring the security of IoT devices and the data they exchange is crucial. This paper utilizes the Random Forest Algorithm from machine learning to detect anomalous data in IoT devices. The dataset consists of environmental data (temperature and humidity) collected from IoT sensors in Oman. The Random Forest Algorithm is implemented and trained using Python, and the accuracy and results of the model are discussed, demonstrating the effectiveness of Random Forest for detecting IoT device data anomalies.

A Causal Recommendation Model based on the Counterfactual Data Augmentation: Case of CausRec (반사실적 데이터 증강에 기반한 인과추천모델: CausRec사례)

  • Hee Seok Song
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.4
    • /
    • pp.29-38
    • /
    • 2023
  • A single-learner model which integrates the user's positive and negative perceptions is proposed by augmenting counterfactual data to the interaction data between users and items, which are mainly used in collaborative filtering in this study. The proposed CausRec showed superior performance compared to the existing NCF model in terms of F1 value and AUC in experiments using three published datasets: MovieLens 100K, Amazon Gift Card, and Amazon Magazine. Compared to the existing NCF model, the F1 and AUC values of CausRec showed 1.2% and 2.6% performance improvement in MovieLens 100K data, and 2.2% and 10% improvement in Amazon Gift Card data, respectively. In particular, in experiments using Amazon Magazine data, F1 and AUC values were improved by 11.7% and 21.9%, respectively, showing a significant performance improvement effect. The performance of CausRec is improved because both positive and negative perceptions of the item were reflected in the recommendation at the same time. It is judged that the proposed method was able to improve the performance of the collaborative filtering because it can simultaneously alleviate the sparsity and imbalance problems of the interaction data.

Knowledge Representation Using Fuzzy Ontologies: A Survey

  • V.Manikandabalaji;R.Sivakumar
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.199-203
    • /
    • 2023
  • In recent decades, the growth of communication technology has resulted in an explosion of data-related information. Ontology perception is being used as a growing requirement to integrate data and unique functionalities. Ontologies are not only critical for transforming the traditional web into the semantic web but also for the development of intelligent applications that use semantic enrichment and machine learning to transform data into smart data. To address these unclear facts, several researchers have been focused on expanding ontologies and semantic web technologies. Due to the lack of clear-cut limitations, ontologies would not suffice to deliver uncertain information among domain ideas, conceptual formalism supplied by traditional. To deal with this ambiguity, it is suggested that fuzzy ontologies should be used. It employs Ontology to introduce fuzzy logical policies for ambiguous area concepts such as darkness, heat, thickness, creaminess, and so on in a device-readable and compatible format. This survey efforts to provide a brief and conveniently understandable study of the research directions taken in the domain of ontology to deal with fuzzy information; reconcile various definitions observed in scientific literature, and identify some of the domain's future research-challenging scenarios. This work is hoping that this evaluation can be treasured by fuzzy ontology scholars. This paper concludes by the way of reviewing present research and stating research gaps for buddy researchers.

Multi-step wind speed forecasting synergistically using generalized S-transform and improved grey wolf optimizer

  • Ruwei Ma;Zhexuan Zhu;Chunxiang Li;Liyuan Cao
    • Wind and Structures
    • /
    • v.38 no.6
    • /
    • pp.461-475
    • /
    • 2024
  • A reliable wind speed forecasting method is crucial for the applications in wind engineering. In this study, the generalized S-transform (GST) is innovatively applied for wind speed forecasting to uncover the time-frequency characteristics in the non-stationary wind speed data. The improved grey wolf optimizer (IGWO) is employed to optimize the adjustable parameters of GST to obtain the best time-frequency resolution. Then a hybrid method based on IGWO-optimized GST is proposed to validate the effectiveness and superiority for multi-step non-stationary wind speed forecasting. The historical wind speed is chosen as the first input feature, while the dynamic time-frequency characteristics obtained by IGWO-optimized GST are chosen as the second input feature. Comparative experiment with six competitors is conducted to demonstrate the best performance of the proposed method in terms of prediction accuracy and stability. The superiority of the GST compared to other time-frequency analysis methods is also discussed by another experiment. It can be concluded that the introduction of IGWO-optimized GST can deeply exploit the time-frequency characteristics and effectively improving the prediction accuracy.