• Title/Summary/Keyword: machine learning applications

Search Result 538, Processing Time 0.027 seconds

Machine Learning-based Classification of Hyperspectral Imagery

  • Haq, Mohd Anul;Rehman, Ziaur;Ahmed, Ahsan;Khan, Mohd Abdul Rahim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.193-202
    • /
    • 2022
  • The classification of hyperspectral imagery (HSI) is essential in the surface of earth observation. Due to the continuous large number of bands, HSI data provide rich information about the object of study; however, it suffers from the curse of dimensionality. Dimensionality reduction is an essential aspect of Machine learning classification. The algorithms based on feature extraction can overcome the data dimensionality issue, thereby allowing the classifiers to utilize comprehensive models to reduce computational costs. This paper assesses and compares two HSI classification techniques. The first is based on the Joint Spatial-Spectral Stacked Autoencoder (JSSSA) method, the second is based on a shallow Artificial Neural Network (SNN), and the third is used the SVM model. The performance of the JSSSA technique is better than the SNN classification technique based on the overall accuracy and Kappa coefficient values. We observed that the JSSSA based method surpasses the SNN technique with an overall accuracy of 96.13% and Kappa coefficient value of 0.95. SNN also achieved a good accuracy of 92.40% and a Kappa coefficient value of 0.90, and SVM achieved an accuracy of 82.87%. The current study suggests that both JSSSA and SNN based techniques prove to be efficient methods for hyperspectral classification of snow features. This work classified the labeled/ground-truth datasets of snow in multiple classes. The labeled/ground-truth data can be valuable for applying deep neural networks such as CNN, hybrid CNN, RNN for glaciology, and snow-related hazard applications.

FRM: Foundation-policy Recommendation Model to Improve the Performance of NAND Flash Memory

  • Won Ho Lee;Jun-Hyeong Choi;Jong Wook Kwak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.1-10
    • /
    • 2023
  • Recently, NAND flash memories have replaced magnetic disks due to non-volatility, high capacity and high resistance, in various computer systems but it has disadvantages which are the limited lifespan and imbalanced operation latency. Therefore, many page replacement policies have been studied to overcome the disadvantages of NAND flash memories. Although it is clear that these policies reflect execution characteristics of various environments and applications, researches on the foundation-policy decision for disk buffer management are insufficient. Thus, in this paper, we propose a foundation-policy recommendation model, called FRM for effectively utilizing NAND flash memories. FRM proposes a suitable page replacement policy by classifying and analyzing characteristics of workloads through machine learning. As an implementation case, we introduce FRM with a disk buffer management policy and in experiment results, prediction accuracy and weighted average of FRM shows 92.85% and 88.97%, by training dataset and validation dataset for foundation disk buffer management policy, respectively.

Classification of Unstructured Customer Complaint Text Data for Potential Vehicle Defect Detection (잠재적 차량 결함 탐지를 위한 비정형 고객불만 텍스트 데이터 분류)

  • Ju Hyun Jo;Chang Su Ok;Jae Il Park
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.72-81
    • /
    • 2023
  • This research proposes a novel approach to tackle the challenge of categorizing unstructured customer complaints in the automotive industry. The goal is to identify potential vehicle defects based on the findings of our algorithm, which can assist automakers in mitigating significant losses and reputational damage caused by mass claims. To achieve this goal, our model uses the Word2Vec method to analyze large volumes of unstructured customer complaint data from the National Highway Traffic Safety Administration (NHTSA). By developing a score dictionary for eight pre-selected criteria, our algorithm can efficiently categorize complaints and detect potential vehicle defects. By calculating the score of each complaint, our algorithm can identify patterns and correlations that can indicate potential defects in the vehicle. One of the key benefits of this approach is its ability to handle a large volume of unstructured data, which can be challenging for traditional methods. By using machine learning techniques, we can extract meaningful insights from customer complaints, which can help automakers prioritize and address potential defects before they become widespread issues. In conclusion, this research provides a promising approach to categorize unstructured customer complaints in the automotive industry and identify potential vehicle defects. By leveraging the power of machine learning, we can help automakers improve the quality of their products and enhance customer satisfaction. Further studies can build upon this approach to explore other potential applications and expand its scope to other industries.

Patch loading resistance prediction of steel plate girders using a deep artificial neural network and an interior-point algorithm

  • Mai, Sy Hung;Tran, Viet-Linh;Nguyen, Duy-Duan;Nguyen, Viet Tiep;Thai, Duc-Kien
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.159-173
    • /
    • 2022
  • This paper proposes a hybrid machine-learning model, which is called DANN-IP, that combines a deep artificial neural network (DANN) and an interior-point (IP) algorithm in order to improve the prediction capacity on the patch loading resistance of steel plate girders. For this purpose, 394 steel plate girders that were subjected to patch loading were tested in order to construct the DANN-IP model. Firstly, several DANN models were developed in order to establish the relationship between the patch loading resistance and the web panel length, the web height, the web thickness, the flange width, the flange thickness, the applied load length, the web yield strength, and the flange yield strength of steel plate girders. Accordingly, the best DANN model was chosen based on three performance indices, which included the R^2, RMSE, and a20-index. The IP algorithm was then adopted to optimize the weights and biases of the DANN model in order to establish the hybrid DANN-IP model. The results obtained from the proposed DANN-IP model were compared with of the results from the DANN model and the existing empirical formulas. The comparison showed that the proposed DANN-IP model achieved the best accuracy with an R^2 of 0.996, an RMSE of 23.260 kN, and an a20-index of 0.891. Finally, a Graphical User Interface (GUI) tool was developed in order to effectively use the proposed DANN-IP model for practical applications.

Predicting restraining effects in CFS channels: A machine learning approach

  • Seyed Mohammad Mojtabaei;Rasoul Khandan;Iman Hajirasouliha
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.441-456
    • /
    • 2024
  • This paper aims to develop Machine Learning (ML) algorithms to predict the buckling resistance of cold-formed steel (CFS) channels with restrained flanges, widely used in typical CFS sheathed wall panels, and provide practical design tools for engineers. The effects of cross-sectional restraints were first evaluated on the elastic buckling behaviour of CFS channels subjected to pure axial compressive load or bending moment. Feedforward multi-layer Artificial Neural Networks (ANNs) were then trained on different datasets comprising CFS channels with various dimensions and properties, plate thicknesses, and restraining conditions on one or two flanges, while the elastic distortional buckling resistance of the elements were determined according to the Finite Strip Method (FSM). To develop less biased networks and ensure that every observation from the original dataset has the chance of appearing in the training and test set, a K-fold cross-validation technique was implemented. In addition, the hyperparameters of the ANNs were tuned using a grid search technique to provide ANNs with optimum performances. The results demonstrated that the trained ANNs were able to predict the elastic distortional buckling resistance of CFS flange-restrained elements with an average accuracy of 99% in terms of coefficient of determination. The developed models were then used to propose a simple ANN-based design formula for the prediction of the elastic distortional buckling stress of CFS flange-restrained elements. Finally, the proposed formula was further evaluated on a separate set of unseen data to ensure its accuracy for practical applications.

A study on semi-supervised kernel ridge regression estimation (준지도 커널능형회귀모형에 관한 연구)

  • Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.341-353
    • /
    • 2013
  • In many practical machine learning and data mining applications, unlabeled data are inexpensive and easy to obtain. Semi-supervised learning try to use such data to improve prediction performance. In this paper, a semi-supervised regression method, semi-supervised kernel ridge regression estimation, is proposed on the basis of kernel ridge regression model. The proposed method does not require a pilot estimation of the label of the unlabeled data. This means that the proposed method has good advantages including less number of parameters, easy computing and good generalization ability. Experiments show that the proposed method can effectively utilize unlabeled data to improve regression estimation.

Lane Detection System using CNN (CNN을 사용한 차선검출 시스템)

  • Kim, Jihun;Lee, Daesik;Lee, Minho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.3
    • /
    • pp.163-171
    • /
    • 2016
  • Lane detection is a widely researched topic. Although simple road detection is easily achieved by previous methods, lane detection becomes very difficult in several complex cases involving noisy edges. To address this, we use a Convolution neural network (CNN) for image enhancement. CNN is a deep learning method that has been very successfully applied in object detection and recognition. In this paper, we introduce a robust lane detection method based on a CNN combined with random sample consensus (RANSAC) algorithm. Initially, we calculate edges in an image using a hat shaped kernel, then we detect lanes using the CNN combined with the RANSAC. In the training process of the CNN, input data consists of edge images and target data is images that have real white color lanes on an otherwise black background. The CNN structure consists of 8 layers with 3 convolutional layers, 2 subsampling layers and multi-layer perceptron (MLP) of 3 fully-connected layers. Convolutional and subsampling layers are hierarchically arranged to form a deep structure. Our proposed lane detection algorithm successfully eliminates noise lines and was found to perform better than other formal line detection algorithms such as RANSAC

Manhole Cover Detection from Natural Scene Based on Imaging Environment Perception

  • Liu, Haoting;Yan, Beibei;Wang, Wei;Li, Xin;Guo, Zhenhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5095-5111
    • /
    • 2019
  • A multi-rotor Unmanned Aerial Vehicle (UAV) system is developed to solve the manhole cover detection problem for the infrastructure maintenance in the suburbs of big city. The visible light sensor is employed to collect the ground image data and a series of image processing and machine learning methods are used to detect the manhole cover. First, the image enhancement technique is employed to improve the imaging effect of visible light camera. An imaging environment perception method is used to increase the computation robustness: the blind Image Quality Evaluation Metrics (IQEMs) are used to percept the imaging environment and select the images which have a high imaging definition for the following computation. Because of its excellent processing effect the adaptive Multiple Scale Retinex (MSR) is used to enhance the imaging quality. Second, the Single Shot multi-box Detector (SSD) method is utilized to identify the manhole cover for its stable processing effect. Third, the spatial coordinate of manhole cover is also estimated from the ground image. The practical applications have verified the outdoor environment adaptability of proposed algorithm and the target detection correctness of proposed system. The detection accuracy can reach 99% and the positioning accuracy is about 0.7 meters.

Neural Network-based FMCW Radar System for Detecting a Drone (소형 무인 항공기 탐지를 위한 인공 신경망 기반 FMCW 레이다 시스템)

  • Jang, Myeongjae;Kim, Soontae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.6
    • /
    • pp.289-296
    • /
    • 2018
  • Drone detection in FMCW radar system needs complex techniques because a drone beat frequency is highly dynamic and unpredictable. Therefore, the current static signal processing algorithms cannot show appropriate detection accuracy. With dynamic signal fluctuation and environmental clutters, it can fail to detect a drone or make false detection. It affects to the radar system integrity and safety. Constant false alarm rate (CFAR), one of famous static signal process algorithm is effective for static environment. But for drone detection, it shows low detection accuracy. In this paper, we suggest neural network based FMCW radar system for detecting a drone. We use recurrent neural network (RNN) because it is the effective neural network for signal processing. In our FMCW radar system, one transmitter emits FMCW signal and four-way fixed receivers detect reflected drone beat frequency. The coordinate of the drone can be calculated with four receivers information by triangulation. Therefore, RNN only learns and inferences reflected drone beat frequency. It helps higher learning and detection accuracy. With several drone flight experiments, RNN shows false detection rate and detection accuracy as 21.1% and 96.4%, respectively.

Artificial Intelligence Applications to Music Composition (인공지능 기반 작곡 프로그램 현황 및 제언)

  • Lee, Sunghoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.261-266
    • /
    • 2018
  • This study aimed to provide an overview of artificial intelligence based music composition programs. The artificial intelligence-based composition program has shown remarkable growth as the development of deep neural network theory and the improvement of big data processing technology. Accordingly, artificial intelligence based composition programs for composing classical music and pop music have been proposed variously in academia and industry. But there are several limitations: devaluation in general populations, missing valuable materials, lack of relevant laws, technology-led industries exclusive to the arts, and so on. When effective measures are taken against these limitations, artificial intelligence based technology will play a significant role in fostering national competitiveness.