Sarah AlBarakati;Sally AlQarni;Rehab K. Qarout;Kaouther Laabidi
International Journal of Computer Science & Network Security
/
v.23
no.10
/
pp.49-56
/
2023
Computer architecture serves as a link between application requirements and underlying technology capabilities such as technical, mathematical, medical, and business applications' computational and storage demands are constantly increasing. Machine learning these days grown and used in many fields and it performed better than traditional computing in applications that need to be implemented by using mathematical algorithms. A mathematical algorithm requires more extensive and quicker calculations, higher computer architecture specification, and takes longer execution time. Therefore, there is a need to improve the use of computer hardware such as CPU, memory, etc. optimization has a main role to reduce the execution time and improve the utilization of computer recourses. And for the importance of execution time in implementing machine learning supervised module linear regression, in this paper we focus on optimizing machine learning algorithms, for this purpose we write a (Diabetes prediction program) and applying on it a Practical Swarm Optimization (PSO) to reduce the execution time and improve the utilization of computer resources. Finally, a massive improvement in execution time were observed.
Journal of the Korean Society of Industry Convergence
/
v.27
no.1
/
pp.87-95
/
2024
This study is on modulo scheduling algorithms for multicore processor in machine learning applications. Machine learning algorithms are designed to perform a large amount of operations such as vectors and matrices in order to quickly process large amounts of data stream. To support such large amounts of computations, processor architectures to support applications such as artificial intelligence, neural networks, and machine learning are designed in the form of parallel processing such as multicore. To effectively utilize these multi-core hardware resources, various compiler techniques are being used and studied. In this study, among these compiler techniques, we analyzed the modular scheduler, which is especially important in one core's computation pipeline. This paper looked at and compared the iterative modular scheduler and the swing modular scheduler, which are the most widely used and studied. As a result, both schedulers provided similar performance results, and when measuring register pressure as an indicator, it was confirmed that the swing modulo scheduler provided slightly better performance. In this study, a technique that divides recurrence edge is proposed to improve the minimum initiation interval of the modulo schedulers.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.10a
/
pp.361-367
/
1998
The main two applications of the Genetic Algorithms(GA) are the optimization and the machine learning. Machine Learning has two objectives that make the complex system learn its environment and produce the proper output of a system. The machine learning using the Genetic Algorithms is called GA machine learning or genetic-based machine learning (GBML). The machine learning is different from the optimization problems in finding the rule set. In optimization problems, the population of GA should converge into the best individual because optimization problems, the population of GA should converge into the best individual because their objective is the production of the individual near the optimal solution. On the contrary, the machine learning systems need to find the set of cooperative rules. There are two methods in GBML, Michigan method and Pittsburgh method. The former is that each rule is expressed with a string, the latter is that the set of rules is coded into a string. Th classifier system of Holland is the representative model of the Michigan method. The classifier systems arrange the strength of classifiers of classifier list using the message list. In this method, the real time process and on-line learning is possible because a set of rule is adjusted on-line. A classifier system has three major components: Performance system, apportionment of credit system, rule discovery system. In this paper, we solve the food search problem with the learning and evolution of an artificial ant using the learning classifier system.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.3
/
pp.704-719
/
2024
Botnet pandemics are becoming more prevalent with the growing use of mobile phone technologies. Mobile phone technologies provide a wide range of applications, including entertainment, commerce, education, and finance. In addition, botnet refers to the collection of compromised devices managed by a botmaster and engaging with each other via a command server to initiate an attack including phishing email, ad-click fraud, blockchain, and much more. As the number of botnet attacks rises, detecting harmful activities is becoming more challenging in handheld devices. Therefore, it is crucial to evaluate mobile botnet assaults to find the security vulnerabilities that occur through coordinated command servers causing major financial and ethical harm. For this purpose, we propose a hybrid analysis approach that integrates permissions and API and experiments on the machine-learning classifiers to detect mobile botnet applications. In this paper, the experiment employed benign, botnet, and malware applications for validation of the performance and accuracy of classifiers. The results conclude that a classifier model based on a simple decision tree obtained 99% accuracy with a low 0.003 false-positive rate than other machine learning classifiers for botnet applications detection. As an outcome of this paper, a hybrid approach enhances the accuracy of mobile botnet detection as compared to static and dynamic features when both are taken separately.
For the purposes of enhancing usability of Numerical Weather Prediction (NWP), the quantitative precipitation prediction scheme by machine learning has been proposed. In this study, heavy rainfall was corrected for by utilizing rainfall predictors from LENS and Radar from 2017 to 2018, as well as machine learning tools LightGBM and XGBoost. The results were analyzed using Mean Absolute Error (MAE), Normalized Peak Error (NPE), and Peak Timing Error (PTE) for rainfall corrected through machine learning. Machine learning results (i.e. using LightGBM and XGBoost) showed improvements in the overall correction of rainfall and maximum rainfall compared to LENS. For example, the MAE of case 5 was found to be 24.252 using LENS, 11.564 using LightGBM, and 11.693 using XGBoost, showing excellent error improvement in machine learning results. This rainfall correction technique can provide hydrologically meaningful rainfall information such as predictions of flooding. Future research on the interpretation of various hydrologic processes using machine learning is necessary.
Journal of information and communication convergence engineering
/
v.22
no.3
/
pp.256-266
/
2024
Sasang constitutional medicine (SCM) is one of the best traditional therapeutic approaches used in Korea. SCM prioritizes personalized treatment that considers the unique constitution of an individual and encompasses their physical characteristics, personality traits, and susceptibility to specific diseases. Facial features are essential for diagnosing Sasang constitutional types (SCTs). This study aimed to develop a real-time artificial intelligence-based model for diagnosing SCTs using facial images, building an SCTs prediction model based on a machine learning method. Facial features from all images were extracted to develop this model using feature engineering and machine learning techniques. The fusion of these features was used to train the AI model. We used four machine learning algorithms, namely, random forest (RF), multilayer perceptron (MLP), gradient boosting machine (GBM), and extreme gradient boosting (XGB), to investigate SCTs. The GBM outperformed all the other models. The highest accuracy achieved in the experiment was 81%, indicating the robustness of the proposed model and suitability for real-time applications.
Underwater acoustics that is the study of the phenomenon of underwater wave propagation and its interaction with boundaries, has mainly been applied to the fields of underwater communication, target detection, marine resources, marine environment, and underwater sound sources. Based on the scientific and engineering understanding of acoustic signals/data, recent studies combining traditional and data-driven machine learning methods have shown continuous progress. Machine learning, represented by deep learning, has shown unprecedented success in a variety of fields, owing to big data, graphical processor unit computing, and advances in algorithms. Although machine learning has not yet been implemented in every single field of underwater acoustics, it will be used more actively in the future in line with the ongoing development and overwhelming achievements of this method. To understand the research trends of machine learning applications in underwater acoustics, the general theoretical background of several related machine learning techniques is introduced in this paper.
Web applications are indispensable in the software industry and continuously evolve either meeting a newer criteria and/or including new functionalities. However, despite assuring quality via testing, what hinders a straightforward development is the presence of defects. Several factors contribute to defects and are often minimized at high expense in terms of man-hours. Thus, detection of fault proneness in early phases of software development is important. Therefore, a fault prediction model for identifying fault-prone classes in a web application is highly desired. In this work, we compare 14 machine learning techniques to analyse the relationship between object oriented metrics and fault prediction in web applications. The study is carried out using various releases of Apache Click and Apache Rave datasets. En-route to the predictive analysis, the input basis set for each release is first optimized using filter based correlation feature selection (CFS) method. It is found that the LCOM3, WMC, NPM and DAM metrics are the most significant predictors. The statistical analysis of these metrics also finds good conformity with the CFS evaluation and affirms the role of these metrics in the defect prediction of web applications. The overall predictive ability of different fault prediction models is first ranked using Friedman technique and then statistically compared using Nemenyi post-hoc analysis. The results not only upholds the predictive capability of machine learning models for faulty classes using web applications, but also finds that ensemble algorithms are most appropriate for defect prediction in Apache datasets. Further, we also derive a consensus between the metrics selected by the CFS technique and the statistical analysis of the datasets.
In this paper, we propose a block-based modularity architecture design method for distributed machine learning. The proposed architecture is a block-type module structure with various machine learning algorithms. It allows free expansion between block-type modules and allows multiple machine learning algorithms to be organically interlocked according to the situation. The architecture enables open data communication using the metadata query protocol. Also, the architecture makes it easy to implement an application service combining various edge computing devices by designing a communication method suitable for surrounding applications. To confirm the interlocking between the proposed block-type modules, we implemented a hardware-based modularity application system.
Haze removal is an object of scientific desire due to its various practical applications. Existing algorithms are founded upon histogram equalization, contrast maximization, or the growing trend of applying machine learning in image processing. Since machine learning-based algorithms solve problems based on the data, they usually perform better than those based on traditional image processing/computer vision techniques. However, to achieve such a high performance, one of the requisites is a large and reliable training database, which seems to be unattainable owing to the complexity of real hazy and haze-free images acquisition. As a result, researchers are currently using the synthetic database, obtained by introducing the synthetic haze drawn from the standard uniform distribution into the clear images. In this paper, we propose the enhanced equidistribution, improving upon our previous study on equidistribution, and use it to make a new database for training machine learning-based haze removal algorithms. A large number of experiments verify the effectiveness of our proposed methodology.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.