• Title/Summary/Keyword: machine learning applications

Search Result 538, Processing Time 0.035 seconds

Performance Comparison of Logistic Regression Algorithms on RHadoop

  • Jung, Byung Ho;Lim, Dong Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.4
    • /
    • pp.9-16
    • /
    • 2017
  • Machine learning has found widespread implementations and applications in many different domains in our life. Logistic regression is a type of classification in machine leaning, and is used widely in many fields, including medicine, economics, marketing and social sciences. In this paper, we present the MapReduce implementation of three existing algorithms, this is, Gradient Descent algorithm, Cost Minimization algorithm and Newton-Raphson algorithm, for logistic regression on RHadoop that integrates R and Hadoop environment applicable to large scale data. We compare the performance of these algorithms for estimation of logistic regression coefficients with real and simulated data sets. We also compare the performance of our RHadoop and RHIPE platforms. The performance experiments showed that our Newton-Raphson algorithm when compared to Gradient Descent and Cost Minimization algorithms appeared to be better to all data tested, also showed that our RHadoop was better than RHIPE in real data, and was opposite in simulated data.

Network Analysis and Neural Network Approach for the Cellular Manufacturing System Design (Network 분석과 신경망을 이용한 Cellular 생산시스템 설계)

  • Lee, Hong-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.1
    • /
    • pp.23-35
    • /
    • 1998
  • This article presents a network flow analysis to form flexible machine cells with minimum intercellular part moves and a neural network model to form part families. The operational sequences and production quantity of the part, and the number of cells and the cell size are taken into considerations for a 0-1 quadratic programming formulation and a network flow based solution procedure is developed. After designing the machine cells, a neural network approach for the integration of part families and the automatic assignment of new parts to the existing cells is proposed. A multi-layer backpropagation network with one hidden layer is used. Experimental results with varying number of neurons in hidden layer to evaluate the role of hidden neurons in the network learning performance are also presented. The comprehensive methodology developed in this article is appropriate for solving large-scale industrial applications without building the knowledge-based expert rule for the cellular manufacturing environment.

  • PDF

Visualizing Multi-Variable Prediction Functions by Segmented k-CPG's

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.185-193
    • /
    • 2009
  • Machine learning methods such as support vector machines and random forests yield nonparametric prediction functions of the form y = $f(x_1,{\ldots},x_p)$. As a sequel to the previous article (Huh and Lee, 2008) for visualizing nonparametric functions, I propose more sensible graphs for visualizing y = $f(x_1,{\ldots},x_p)$ herein which has two clear advantages over the previous simple graphs. New graphs will show a small number of prototype curves of $f(x_1,{\ldots},x_{j-1},x_j,x_{j+1}{\ldots},x_p)$, revealing statistically plausible portion over the interval of $x_j$ which changes with ($x_1,{\ldots},x_{j-1},x_{j+1},{\ldots},x_p$). To complement the visual display, matching importance measures for each of p predictor variables are produced. The proposed graphs and importance measures are validated in simulated settings and demonstrated for an environmental study.

Research of Gesture Recognition Technology Based on GMM and SVM Hybrid Model Using EPIC Sensor (EPIC 센서를 이용한 GMM, SVM 기반 동작인식기법에 관한 연구)

  • CHEN, CUI;Kim, Young-Chul
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.11-12
    • /
    • 2016
  • SVM (Support Vector machine) is powerful machine-learning method, and obtains better performance than traditional methods in the applications of muti-dimension nonlinear pattern classification. For the case of SVM model training and low efficiency in large samples, this paper proposes a combination of statistical parameters of the GMM-UBM (Universal Background Model) model. It is very effective to solve the problem of the large sample for the SVM training. The experiment is carried on four special dynamic hand gestures using the EPIC sensors. And the results show that the improved dynamic hand gesture recognition system has a high recognition rate up to 96.75%.

  • PDF

A Comparative Study of Phishing Websites Classification Based on Classifier Ensembles

  • Tama, Bayu Adhi;Rhee, Kyung-Hyune
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.99-104
    • /
    • 2018
  • Phishing website has become a crucial concern in cyber security applications. It is performed by fraudulently deceiving users with the aim of obtaining their sensitive information such as bank account information, credit card, username, and password. The threat has led to huge losses to online retailers, e-business platform, financial institutions, and to name but a few. One way to build anti-phishing detection mechanism is to construct classification algorithm based on machine learning techniques. The objective of this paper is to compare different classifier ensemble approaches, i.e. random forest, rotation forest, gradient boosted machine, and extreme gradient boosting against single classifiers, i.e. decision tree, classification and regression tree, and credal decision tree in the case of website phishing. Area under ROC curve (AUC) is employed as a performance metric, whilst statistical tests are used as baseline indicator of significance evaluation among classifiers. The paper contributes the existing literature on making a benchmark of classifier ensembles for web phishing detection.

A Detailed Analysis of Classifier Ensembles for Intrusion Detection in Wireless Network

  • Tama, Bayu Adhi;Rhee, Kyung-Hyune
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1203-1212
    • /
    • 2017
  • Intrusion detection systems (IDSs) are crucial in this overwhelming increase of attacks on the computing infrastructure. It intelligently detects malicious and predicts future attack patterns based on the classification analysis using machine learning and data mining techniques. This paper is devoted to thoroughly evaluate classifier ensembles for IDSs in IEEE 802.11 wireless network. Two ensemble techniques, i.e. voting and stacking are employed to combine the three base classifiers, i.e. decision tree (DT), random forest (RF), and support vector machine (SVM). We use area under ROC curve (AUC) value as a performance metric. Finally, we conduct two statistical significance tests to evaluate the performance differences among classifiers.

Production Equipment Monitoring System Based on Cloud Computing for Machine Manufacturing Tools

  • Kim, Sungun;Yu, Heung-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.197-205
    • /
    • 2022
  • The Cyber Physical System(CPS) is an important concept in achieving SMSs(Smart Manufacturing Systems). Generally, CPS consists of physical and virtual elements. The former involves manufacturing devices in the field space, whereas the latter includes the technologies such as network, data collection and analysis, security, and monitoring and control technologies in the cyber space. Currently, all these elements are being integrated for achieving SMSs in which we can control and analyze various kinds of producing and diagnostic issues in the cyber space without the need for human intervention. In this study, we focus on implementing a production equipment monitoring system related to building a SMS. First, we describe the development of a fog-based gateway system that links physical manufacturing devices with virtual elements. This system also interacts with the cloud server in a multimedia network environment. Second, we explain the proposed network infrastructure to implement a monitoring system operating on a cloud server. Then, we discuss our monitoring applications, and explain the experience of how to apply the ML(Machine Learning) method for predictive diagnostics.

Facial Age Estimation Using Convolutional Neural Networks Based on Inception Modules (인셉션 모듈 기반 컨볼루션 신경망을 이용한 얼굴 연령 예측)

  • Sukh-Erdene, Bolortuya;Cho, Hyun-chong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1224-1231
    • /
    • 2018
  • Automatic age estimation has been used in many social network applications, practical commercial applications, and human-computer interaction visual-surveillance biometrics. However, it has rarely been explored. In this paper, we propose an automatic age estimation system, which includes face detection and convolutional deep learning based on an inception module. The latter is a 22-layer-deep network that serves as the particular category of the inception design. To evaluate the proposed approach, we use 4,000 images of eight different age groups from the Adience age dataset. k-fold cross-validation (k = 5) is applied. A comparison of the performance of the proposed work and recent related methods is presented. The results show that the proposed method significantly outperforms existing methods in terms of the exact accuracy and off-by-one accuracy. The off-by-one accuracy is when the result is off by one adjacent age label to the above or below. For the exact accuracy, the age label of "60+" is classified with the highest accuracy of 76%.

Applications of the Text Mining Approach to Online Financial Information

  • Hansol Lee;Juyoung Kang;Sangun Park
    • Asia pacific journal of information systems
    • /
    • v.32 no.4
    • /
    • pp.770-802
    • /
    • 2022
  • With the development of deep learning techniques, text mining is producing breakthrough performance improvements, promising future applications, and practical use cases across many fields. Likewise, even though several attempts have been made in the field of financial information, few cases apply the current technological trends. Recently, companies and government agencies have attempted to conduct research and apply text mining in the field of financial information. First, in this study, we investigate various works using text mining to show what studies have been conducted in the financial sector. Second, to broaden the view of financial application, we provide a description of several text mining techniques that can be used in the field of financial information and summarize various paradigms in which these technologies can be applied. Third, we also provide practical cases for applying the latest text mining techniques in the field of financial information to provide more tangible guidance for those who will use text mining techniques in finance. Lastly, we propose potential future research topics in the field of financial information and present the research methods and utilization plans. This study can motivate researchers studying financial issues to use text mining techniques to gain new insights and improve their work from the rich information hidden in text data.

Post-processing Algorithm Based on Edge Information to Improve the Accuracy of Semantic Image Segmentation (의미론적 영상 분할의 정확도 향상을 위한 에지 정보 기반 후처리 방법)

  • Kim, Jung-Hwan;Kim, Seon-Hyeok;Kim, Joo-heui;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.3
    • /
    • pp.23-32
    • /
    • 2021
  • Semantic image segmentation technology in the field of computer vision is a technology that classifies an image by dividing it into pixels. This technique is also rapidly improving performance using a machine learning method, and a high possibility of utilizing information in units of pixels is drawing attention. However, this technology has been raised from the early days until recently for 'lack of detailed segmentation' problem. Since this problem was caused by increasing the size of the label map, it was expected that the label map could be improved by using the edge map of the original image with detailed edge information. Therefore, in this paper, we propose a post-processing algorithm that maintains semantic image segmentation based on learning, but modifies the resulting label map based on the edge map of the original image. After applying the algorithm to the existing method, when comparing similar applications before and after, approximately 1.74% pixels and 1.35% IoU (Intersection of Union) were applied, and when analyzing the results, the precise targeting fine segmentation function was improved.