• Title/Summary/Keyword: machine learning applications

Search Result 538, Processing Time 0.024 seconds

Machine Learning-based Screening Algorithm for Energy Storage System Using Retired Lithium-ion Batteries (에너지 저장 시스템 적용을 위한 머신러닝 기반의 폐배터리 스크리닝 알고리즘)

  • Han, Eui-Seong;Lim, Je-Yeong;Lee, Hyeon-Ho;Kim, Dong-Hwan;Noh, Tae-Won;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.265-274
    • /
    • 2022
  • This paper proposes a machine learning-based screening algorithm to build the retired battery pack of the energy storage system. The proposed algorithm creates the dataset of various performance parameters of the retired battery, and this dataset is preprocessed through a principal component analysis to reduce the overfitting problem. The retried batteries with a large deviation are excluded in the dataset through a density-based spatial clustering of applications with noise, and the K-means clustering method is formulated to select the group of the retired batteries to satisfy the deviation requirement conditions. The performance of the proposed algorithm is verified based on NASA and Oxford datasets.

Speech Emotion Recognition with SVM, KNN and DSVM

  • Hadhami Aouani ;Yassine Ben Ayed
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.40-48
    • /
    • 2023
  • Speech Emotions recognition has become the active research theme in speech processing and in applications based on human-machine interaction. In this work, our system is a two-stage approach, namely feature extraction and classification engine. Firstly, two sets of feature are investigated which are: the first one is extracting only 13 Mel-frequency Cepstral Coefficient (MFCC) from emotional speech samples and the second one is applying features fusions between the three features: Zero Crossing Rate (ZCR), Teager Energy Operator (TEO), and Harmonic to Noise Rate (HNR) and MFCC features. Secondly, we use two types of classification techniques which are: the Support Vector Machines (SVM) and the k-Nearest Neighbor (k-NN) to show the performance between them. Besides that, we investigate the importance of the recent advances in machine learning including the deep kernel learning. A large set of experiments are conducted on Surrey Audio-Visual Expressed Emotion (SAVEE) dataset for seven emotions. The results of our experiments showed given good accuracy compared with the previous studies.

A comparison of imputation methods using machine learning models

  • Heajung Suh;Jongwoo Song
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.331-341
    • /
    • 2023
  • Handling missing values in data analysis is essential in constructing a good prediction model. The easiest way to handle missing values is to use complete case data, but this can lead to information loss within the data and invalid conclusions in data analysis. Imputation is a technique that replaces missing data with alternative values obtained from information in a dataset. Conventional imputation methods include K-nearest-neighbor imputation and multiple imputations. Recent methods include missForest, missRanger, and mixgb ,all which use machine learning algorithms. This paper compares the imputation techniques for datasets with mixed datatypes in various situations, such as data size, missing ratios, and missing mechanisms. To evaluate the performance of each method in mixed datasets, we propose a new imputation performance measure (IPM) that is a unified measurement applicable to numerical and categorical variables. We believe this metric can help find the best imputation method. Finally, we summarize the comparison results with imputation performances and computational times.

Research on Performance of Graph Algorithm using Deep Learning Technology (딥러닝 기술을 적용한 그래프 알고리즘 성능 연구)

  • Giseop Noh
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.471-476
    • /
    • 2024
  • With the spread of various smart devices and computing devices, big data generation is occurring widely. Machine learning is an algorithm that performs reasoning by learning data patterns. Among the various machine learning algorithms, the algorithm that attracts attention is deep learning based on neural networks. Deep learning is achieving rapid performance improvement with the release of various applications. Recently, among deep learning algorithms, attempts to analyze data using graph structures are increasing. In this study, we present a graph generation method for transferring to a deep learning network. This paper proposes a method of generalizing node properties and edge weights in the graph generation process and converting them into a structure for deep learning input by presenting a matricization We present a method of applying a linear transformation matrix that can preserve attribute and weight information in the graph generation process. Finally, we present a deep learning input structure of a general graph and present an approach for performance analysis.

Stock Price Direction Prediction Using Convolutional Neural Network: Emphasis on Correlation Feature Selection (합성곱 신경망을 이용한 주가방향 예측: 상관관계 속성선택 방법을 중심으로)

  • Kyun Sun Eo;Kun Chang Lee
    • Information Systems Review
    • /
    • v.22 no.4
    • /
    • pp.21-39
    • /
    • 2020
  • Recently, deep learning has shown high performance in various applications such as pattern analysis and image classification. Especially known as a difficult task in the field of machine learning research, stock market forecasting is an area where the effectiveness of deep learning techniques is being verified by many researchers. This study proposed a deep learning Convolutional Neural Network (CNN) model to predict the direction of stock prices. We then used the feature selection method to improve the performance of the model. We compared the performance of machine learning classifiers against CNN. The classifiers used in this study are as follows: Logistic Regression, Decision Tree, Neural Network, Support Vector Machine, Adaboost, Bagging, and Random Forest. The results of this study confirmed that the CNN showed higher performancecompared with other classifiers in the case of feature selection. The results show that the CNN model effectively predicted the stock price direction by analyzing the embedded values of the financial data

Two-Agent Scheduling with Sequence-Dependent Exponential Learning Effects Consideration (처리순서기반 지수함수 학습효과를 고려한 2-에이전트 스케줄링)

  • Choi, Jin Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.4
    • /
    • pp.130-137
    • /
    • 2013
  • In this paper, we consider a two-agent scheduling with sequence-dependent exponential learning effects consideration, where two agents A and B have to share a single machine for processing their jobs. The objective function for agent A is to minimize the total completion time of jobs for agent A subject to a given upper bound on the objective function of agent B, representing the makespan of jobs for agent B. By assuming that the learning ratios for all jobs are the same, we suggest an enumeration-based backward allocation scheduling for finding an optimal solution and exemplify it by using a small numerical example. This problem has various applications in production systems as well as in operations management.

Object Tracking Algorithm of Swarm Robot System for using Polygon Based Q-Learning and Cascade SVM (다각형 기반의 Q-Learning과 Cascade SVM을 이용한 군집로봇의 목표물 추적 알고리즘)

  • Seo, Sang-Wook;Yang, Hyung-Chang;Sim, Kwee-Bo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.119-125
    • /
    • 2008
  • This paper presents the polygon-based Q-leaning and Cascade Support Vector Machine algorithm for object search with multiple robots. We organized an experimental environment with ten mobile robots, twenty five obstacles, and an object, and then we sent the robots to a hallway, where some obstacles were lying about, to search for a hidden object. In experiment, we used four different control methods: a random search, a fusion model with Distance-based action making (DBAM) and Area-based action making (ABAM) process to determine the next action of the robots, and hexagon-based Q-learning and dodecagon-based Q-learning and Cascade SVM to enhance the fusion model with DBAM and ABAM process.

  • PDF

Drone Simulation Technologies (드론 시뮬레이션 기술)

  • Lee, S.J.;Yang, J.G.;Lee, B.S.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.81-90
    • /
    • 2020
  • The use of machine learning technologies such as deep and reinforcement learning has proliferated in various domains with the advancement of deep neural network studies. To make the learning successful, both big data acquisition and fast processing are required. However, for some physical world applications such as autonomous drone flight, it is difficult to achieve efficient learning because learning with a premature A.I. is dangerous, cost-ineffective, and time-consuming. To solve these problems, simulation-based approaches can be considered. In this study, we analyze recent trends in drone simulation technologies and compare their features. Subsequently, we introduce Octopus, which is a highly precise and scalable drone simulator being developed by ETRI.

Design and Implementation of Parking Guidance System Based on Internet of Things(IoT) Using Q-learning Model (Q-learning 모델을 이용한 IoT 기반 주차유도 시스템의 설계 및 구현)

  • Ji, Yong-Joo;Choi, Hak-Hui;Kim, Dong-Seong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.3
    • /
    • pp.153-162
    • /
    • 2016
  • This paper proposes an optimal dynamic resource allocation method in IoT (Internet of Things) parking guidance system using Q-learning resource allocation model. In the proposed method, a resource allocation using a forecasting model based on Q-learning is employed for optimal utilization of parking guidance system. To demonstrate efficiency and availability of the proposed method, it is verified by computer simulation and practical testbed. Through simulation results, this paper proves that the proposed method can enhance total throughput, decrease penalty fee issued by SLA (Service Level Agreement) and reduce response time with the dynamic number of users.

Synthetic Image Generation for Military Vehicle Detection (군용물체탐지 연구를 위한 가상 이미지 데이터 생성)

  • Se-Yoon Oh;Hunmin Yang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.392-399
    • /
    • 2023
  • This research paper investigates the effectiveness of using computer graphics(CG) based synthetic data for deep learning in military vehicle detection. In particular, we explore the use of synthetic image generation techniques to train deep neural networks for object detection tasks. Our approach involves the generation of a large dataset of synthetic images of military vehicles, which is then used to train a deep learning model. The resulting model is then evaluated on real-world images to measure its effectiveness. Our experimental results show that synthetic training data alone can achieve effective results in object detection. Our findings demonstrate the potential of CG-based synthetic data for deep learning and suggest its value as a tool for training models in a variety of applications, including military vehicle detection.