• 제목/요약/키워드: machine learning applications

Search Result 538, Processing Time 0.028 seconds

Object Detection Using Deep Learning Algorithm CNN

  • S. Sumahasan;Udaya Kumar Addanki;Navya Irlapati;Amulya Jonnala
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.129-134
    • /
    • 2024
  • Object Detection is an emerging technology in the field of Computer Vision and Image Processing that deals with detecting objects of a particular class in digital images. It has considered being one of the complicated and challenging tasks in computer vision. Earlier several machine learning-based approaches like SIFT (Scale-invariant feature transform) and HOG (Histogram of oriented gradients) are widely used to classify objects in an image. These approaches use the Support vector machine for classification. The biggest challenges with these approaches are that they are computationally intensive for use in real-time applications, and these methods do not work well with massive datasets. To overcome these challenges, we implemented a Deep Learning based approach Convolutional Neural Network (CNN) in this paper. The Proposed approach provides accurate results in detecting objects in an image by the area of object highlighted in a Bounding Box along with its accuracy.

Clinical applications and performance of intelligent systems in dental and maxillofacial radiology: A review

  • Nagi, Ravleen;Aravinda, Konidena;Rakesh, N;Gupta, Rajesh;Pal, Ajay;Mann, Amrit Kaur
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.81-92
    • /
    • 2020
  • Intelligent systems(i.e., artificial intelligence), particularly deep learning, are machines able to mimic the cognitive functions of humans to perform tasks of problem-solving and learning. This field deals with computational models that can think and act intelligently, like the human brain, and construct algorithms that can learn from data to make predictions. Artificial intelligence is becoming important in radiology due to its ability to detect abnormalities in radiographic images that are unnoticed by the naked human eye. These systems have reduced radiologists' workload by rapidly recording and presenting data, and thereby monitoring the treatment response with a reduced risk of cognitive bias. Intelligent systems have an important role to play and could be used by dentists as an adjunct to other imaging modalities in making appropriate diagnoses and treatment plans. In the field of maxillofacial radiology, these systems have shown promise for the interpretation of complex images, accurate localization of landmarks, characterization of bone architecture, estimation of oral cancer risk, and the assessment of metastatic lymph nodes, periapical pathologies, and maxillary sinus pathologies. This review discusses the clinical applications and scope of intelligent systems such as machine learning, artificial intelligence, and deep learning programs in maxillofacial imaging.

Federated Learning-Internet of Underwater Things (연합 학습기반 수중 사물 인터넷)

  • Shrutika Sinha;G., Pradeep Reddy;Soo-Hyun Park
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.140-142
    • /
    • 2023
  • Federated learning (FL) is a new paradigm in machine learning (ML) that enables multiple devices to collaboratively train a shared ML model without sharing their local data. FL is well-suited for applications where data is sensitive or difficult to transmit in large volumes, or where collaborative learning is required. The Internet of Underwater Things (IoUT) is a network of underwater devices that collect and exchange data. This data can be used for a variety of applications, such as monitoring water quality, detecting marine life, and tracking underwater vehicles. However, the harsh underwater environment makes it difficult to collect and transmit data in large volumes. FL can address these challenges by enabling devices to train a shared ML model without having to transmit their data to a central server. This can help to protect the privacy of the data and improve the efficiency of training. In this view, this paper provides a brief overview of Fed-IoUT, highlighting its various applications, challenges, and opportunities.

Artificial Intelligence Applications on Mobile Telecommunication Systems (AI의 이동통신시스템 적용)

  • Yeh, C.I.;Chang, K.S.;Ko, Y.J.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.4
    • /
    • pp.60-69
    • /
    • 2022
  • So far, artificial intelligence (AI)/machine learning (ML) has produced impressive results in speech recognition, computer vision, and natural language processing. AI/ML has recently begun to show promise as a viable means for improving the performance of 5G mobile telecommunication systems. This paper investigates standardization activities in 3GPP and O-RAN Alliance regarding AI/ML applications on mobile telecommunication system. Future trends in AI/ML technologies are also summarized. As an overarching technology in 6G, there appears to be no doubt that AI/ML could contribute to every part of mobile systems, including core, RAN, and air-interface, in terms of performance enhancement, automation, cost reduction, and energy consumption reduction.

Application of Artificial Intelligence in Gastric Cancer (위암에서 인공지능의 응용)

  • Jung In Lee
    • Journal of Digestive Cancer Research
    • /
    • v.11 no.3
    • /
    • pp.130-140
    • /
    • 2023
  • Gastric cancer (GC) is one of the most common malignant tumors worldwide, with a 5-year survival rate of < 40%. The diagnosis and treatment decisions of GC rely on human experts' judgments on medical images; therefore, the accuracy can be hindered by image condition, objective criterion, limited experience, and interobserver discrepancy. In recent years, several applications of artificial intelligence (AI) have emerged in the GC field based on improvement of computational power and deep learning algorithms. AI can support various clinical practices in endoscopic examination, pathologic confirmation, radiologic staging, and prognosis prediction. This review has systematically summarized the current status of AI applications after a comprehensive literature search. Although the current approaches are challenged by data scarcity and poor interpretability, future directions of this field are likely to overcome the risk and enhance their accuracy and applicability in clinical practice.

Identifying Mobile Owner based on Authorship Attribution using WhatsApp Conversation

  • Almezaini, Badr Mohammd;Khan, Muhammad Asif
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.317-323
    • /
    • 2021
  • Social media is increasingly becoming a part of our daily life for communicating each other. There are various tools and applications for communication and therefore, identity theft is a common issue among users of such application. A new style of identity theft occurs when cybercriminals break into WhatsApp account, pretend as real friends and demand money or blackmail emotionally. In order to prevent from such issues, data mining can be used for text classification (TC) in analysis authorship attribution (AA) to recognize original sender of the message. Arabic is one of the most spoken languages around the world with different variants. In this research, we built a machine learning model for mining and analyzing the Arabic messages to identify the author of the messages in Saudi dialect. Many points would be addressed regarding authorship attribution mining and analysis: collect Arabic messages in the Saudi dialect, filtration of the messages' tokens. The classification would use a cross-validation technique and different machine-learning algorithms (Naïve Baye, Support Vector Machine). Results of average accuracy for Naïve Baye and Support Vector Machine have been presented and suggestions for future work have been presented.

Fake News Detection for Korean News Using Text Mining and Machine Learning Techniques (텍스트 마이닝과 기계 학습을 이용한 국내 가짜뉴스 예측)

  • Yun, Tae-Uk;Ahn, Hyunchul
    • Journal of Information Technology Applications and Management
    • /
    • v.25 no.1
    • /
    • pp.19-32
    • /
    • 2018
  • Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection method using Artificial Intelligence techniques over the past years. But, unfortunately, there have been no prior studies proposed an automated fake news detection method for Korean news. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (Topic Modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as multiple discriminant analysis, case based reasoning, artificial neural networks, and support vector machine can be applied. To validate the effectiveness of the proposed method, we collected 200 Korean news from Seoul National University's FactCheck (http://factcheck.snu.ac.kr). which provides with detailed analysis reports from about 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

Kernel-Trick Regression and Classification

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.201-207
    • /
    • 2015
  • Support vector machine (SVM) is a well known kernel-trick supervised learning tool. This study proposes a working scheme for kernel-trick regression and classification (KtRC) as a SVM alternative. KtRC fits the model on a number of random subsamples and selects the best model. Empirical examples and a simulation study indicate that KtRC's performance is comparable to SVM.

Kernel Adatron Algorithm for Supprot Vector Regression

  • Kyungha Seok;Changha Hwang
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.843-848
    • /
    • 1999
  • Support vector machine(SVM) is a new and very promising classification and regression technique developed by Bapnik and his group at AT&T Bell laboratories. However it has failed to establish itself as common machine learning tool. This is partly due to the fact that SVM is not easy to implement and its standard implementation requires the optimization package for quadratic programming. In this paper we present simple iterative Kernl Adatron algorithm for nonparametric regression which is easy to implement and guaranteed to converge to the optimal solution and compare it with neural networks and projection pursuit regression.

  • PDF

A Hybrid of Rule based Method and Memory based Loaming for Korean Text Chunking (한국어 구 단위화를 위한 규칙 기반 방법과 기억 기반 학습의 결합)

  • 박성배;장병탁
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.3
    • /
    • pp.369-378
    • /
    • 2004
  • In partially free word order languages like Korean and Japanese, the rule-based method is effective for text chunking, and shows the performance as high as machine learning methods even with a few rules due to the well-developed overt Postpositions and endings. However, it has no ability to handle the exceptions of the rules. Exception handling is an important work in natural language processing, and the exceptions can be efficiently processed in memory-based teaming. In this paper, we propose a hybrid of rule-based method and memory-based learning for Korean text chunking. The proposed method is primarily based on the rules, and then the chunks estimated by the rules are verified by memory-based classifier. An evaluation of the proposed method on Korean STEP 2000 corpus yields the improvement in F-score over the rules or various machine teaming methods alone. The final F-score is 94.19, while those of the rules and SVMs, the best machine learning method for this task, are just 91.87 and 92.54 respectively.