• 제목/요약/키워드: machine learning algorithm

검색결과 1,532건 처리시간 0.03초

A Multiple Instance Learning Problem Approach Model to Anomaly Network Intrusion Detection

  • Weon, Ill-Young;Song, Doo-Heon;Ko, Sung-Bum;Lee, Chang-Hoon
    • Journal of Information Processing Systems
    • /
    • 제1권1호
    • /
    • pp.14-21
    • /
    • 2005
  • Even though mainly statistical methods have been used in anomaly network intrusion detection, to detect various attack types, machine learning based anomaly detection was introduced. Machine learning based anomaly detection started from research applying traditional learning algorithms of artificial intelligence to intrusion detection. However, detection rates of these methods are not satisfactory. Especially, high false positive and repeated alarms about the same attack are problems. The main reason for this is that one packet is used as a basic learning unit. Most attacks consist of more than one packet. In addition, an attack does not lead to a consecutive packet stream. Therefore, with grouping of related packets, a new approach of group-based learning and detection is needed. This type of approach is similar to that of multiple-instance problems in the artificial intelligence community, which cannot clearly classify one instance, but classification of a group is possible. We suggest group generation algorithm grouping related packets, and a learning algorithm based on a unit of such group. To verify the usefulness of the suggested algorithm, 1998 DARPA data was used and the results show that our approach is quite useful.

Predictive maintenance architecture development for nuclear infrastructure using machine learning

  • Gohel, Hardik A.;Upadhyay, Himanshu;Lagos, Leonel;Cooper, Kevin;Sanzetenea, Andrew
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1436-1442
    • /
    • 2020
  • Nuclear infrastructure systems play an important role in national security. The functions and missions of nuclear infrastructure systems are vital to government, businesses, society and citizen's lives. It is crucial to design nuclear infrastructure for scalability, reliability and robustness. To do this, we can use machine learning, which is a state of the art technology used in various fields ranging from voice recognition, Internet of Things (IoT) device management and autonomous vehicles. In this paper, we propose to design and develop a machine learning algorithm to perform predictive maintenance of nuclear infrastructure. Support vector machine and logistic regression algorithms will be used to perform the prediction. These machine learning techniques have been used to explore and compare rare events that could occur in nuclear infrastructure. As per our literature review, support vector machines provide better performance metrics. In this paper, we have performed parameter optimization for both algorithms mentioned. Existing research has been done in conditions with a great volume of data, but this paper presents a novel approach to correlate nuclear infrastructure data samples where the density of probability is very low. This paper also identifies the respective motivations and distinguishes between benefits and drawbacks of the selected machine learning algorithms.

Study on Machine Learning Techniques for Malware Classification and Detection

  • Moon, Jaewoong;Kim, Subin;Song, Jaeseung;Kim, Kyungshin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권12호
    • /
    • pp.4308-4325
    • /
    • 2021
  • The importance and necessity of artificial intelligence, particularly machine learning, has recently been emphasized. In fact, artificial intelligence, such as intelligent surveillance cameras and other security systems, is used to solve various problems or provide convenience, providing solutions to problems that humans traditionally had to manually deal with one at a time. Among them, information security is one of the domains where the use of artificial intelligence is especially needed because the frequency of occurrence and processing capacity of dangerous codes exceeds the capabilities of humans. Therefore, this study intends to examine the definition of artificial intelligence and machine learning, its execution method, process, learning algorithm, and cases of utilization in various domains, particularly the cases and contents of artificial intelligence technology used in the field of information security. Based on this, this study proposes a method to apply machine learning technology to the method of classifying and detecting malware that has rapidly increased in recent years. The proposed methodology converts software programs containing malicious codes into images and creates training data suitable for machine learning by preparing data and augmenting the dataset. The model trained using the images created in this manner is expected to be effective in classifying and detecting malware.

A Study on the Implementation of Crawling Robot using Q-Learning

  • Hyunki KIM;Kyung-A KIM;Myung-Ae CHUNG;Min-Soo KANG
    • 한국인공지능학회지
    • /
    • 제11권4호
    • /
    • pp.15-20
    • /
    • 2023
  • Machine learning is comprised of supervised learning, unsupervised learning and reinforcement learning as the type of data and processing mechanism. In this paper, as input and output are unclear and it is difficult to apply the concrete modeling mathematically, reinforcement learning method are applied for crawling robot in this paper. Especially, Q-Learning is the most effective learning technique in model free reinforcement learning. This paper presents a method to implement a crawling robot that is operated by finding the most optimal crawling method through trial and error in a dynamic environment using a Q-learning algorithm. The goal is to perform reinforcement learning to find the optimal two motor angle for the best performance, and finally to maintain the most mature and stable motion about EV3 Crawling robot. In this paper, for the production of the crawling robot, it was produced using Lego Mindstorms with two motors, an ultrasonic sensor, a brick and switches, and EV3 Classroom SW are used for this implementation. By repeating 3 times learning, total 60 data are acquired, and two motor angles vs. crawling distance graph are plotted for the more understanding. Applying the Q-learning reinforcement learning algorithm, it was confirmed that the crawling robot found the optimal motor angle and operated with trained learning, and learn to know the direction for the future research.

Support Vector Machine based on Stratified Sampling

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권2호
    • /
    • pp.141-146
    • /
    • 2009
  • Support vector machine is a classification algorithm based on statistical learning theory. It has shown many results with good performances in the data mining fields. But there are some problems in the algorithm. One of the problems is its heavy computing cost. So we have been difficult to use the support vector machine in the dynamic and online systems. To overcome this problem we propose to use stratified sampling of statistical sampling theory. The usage of stratified sampling supports to reduce the size of training data. In our paper, though the size of data is small, the performance accuracy is maintained. We verify our improved performance by experimental results using data sets from UCI machine learning repository.

쉴드 TBM 디스크 커터 교체 유무 판단을 위한 머신러닝 분류기법 성능 비교 (Performance comparison of machine learning classification methods for decision of disc cutter replacement of shield TBM)

  • 김윤희;홍지연;김범주
    • 한국터널지하공간학회 논문집
    • /
    • 제22권5호
    • /
    • pp.575-589
    • /
    • 2020
  • 최근 국내 터널에서 지속적으로 증가하고 있는 쉴드 TBM 공법의 주된 굴착도구는 디스크 커터로 굴진과정에서 자연스럽게 마모가 발생하고 이는 TBM의 굴진효능을 현저히 저하시키기 때문에 적절한 시기에 교체하는 것이 중요하다. 따라서 본 연구에서는 디스크 커터 교체 여부를 판단할 수 있는 예측 모델을 머신러닝 기법을 사용한 방법으로 제안하였다. 이를 위해 국내 기 시공된 쉴드 TBM 현장의 데이터 중 디스크 커터 소모에 상관성이 높은 굴진데이터(TBM 기계데이터, 지반정보 등)와 교체이력을 입력데이터로 사용하여 다양한 머신러닝 분류기법 중 서포트 벡터 머신, 최근접이웃 알고리즘, 의사결정트리 알고리즘을 사용하여 최적의 예측 모델을 구축하고 모델의 성능을 평가하기 위하여 분류성능평가 지표로 비교 분석하였다.

온라인 학습에 의한 기계상태의 예측 (On-line learning prediction of machine condition)

  • 왕지남;정윤성;김광섭
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1994년도 춘계공동학술대회논문집; 창원대학교; 08월 09일 Apr. 1994
    • /
    • pp.149-158
    • /
    • 1994
  • A radial basis hybrid neural network (RHNN) is presented for on-line prediction of machine condition. A modular-based neural architecture is designed for modeling a machine condition process and for predicting future signal. A fast on-line learning algorithm is introduced. Experimental results showed the RHNN could be utilized efficiently for on-line machine condition monitoring.

Single Antenna Based GPS Signal Reception Condition Classification Using Machine Learning Approaches

  • Sanghyun Kim;Seunghyeon Park;Jiwon Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권2호
    • /
    • pp.149-155
    • /
    • 2023
  • In urban areas it can be difficult to utilize global navigation satellite systems (GNSS) due to signal reflections and blockages. It is thus crucial to detect reflected or blocked signals because they lead to significant degradation of GNSS positioning accuracy. In a previous study, a classifier for global positioning system (GPS) signal reception conditions was developed using three features and the support vector machine (SVM) algorithm. However, this classifier had limitations in its classification performance. Therefore, in this study, we developed an improved machine learning based method of classifying GPS signal reception conditions by including an additional feature with the existing features. Furthermore, we applied various machine learning classification algorithms. As a result, when tested with datasets collected in different environments than the training environment, the classification accuracy improved by nine percentage points compared to the existing method, reaching up to 58%.

기분석사전과 기계학습 방법을 결합한 음절 단위 한국어 품사 태깅 (Syllable-based Korean POS Tagging Based on Combining a Pre-analyzed Dictionary with Machine Learning)

  • 이충희;임준호;임수종;김현기
    • 정보과학회 논문지
    • /
    • 제43권3호
    • /
    • pp.362-369
    • /
    • 2016
  • 본 논문은 음절 단위 한국어 품사 태깅 방법의 성능 개선을 위해 기분석사전과 기계학습 방법을 결합하는 방법을 제안한다. 음절 단위 품사 태깅 방법은 형태소분석을 수행하지 않고 품사 태깅만을 수행하는 방법이며, 순차적 레이블링(Sequence Labeling) 문제로 형태소 태깅 문제를 접근한다. 본 논문에서는 순차적 레이블링 기반 음절 단위 품사 태깅 방법의 전처리 단계로 품사 태깅말뭉치와 국어사전으로부터 구축된 복합명사 기분석사전과 약 1천만 어절의 세종 품사 태깅말뭉치로부터 자동 추출된 어절 사전을 적용함으로써 품사 태깅 성능을 개선시킨다. 성능 평가를 위해서 약 74만 어절의 세종 품사 태깅말 뭉치로부터 67만 어절을 학습 데이터로 사용하고 나머지 7만 4천 어절을 평가셋으로 사용하였다. 기계학습 방법만을 사용한 경우에 96.4%의 어절 정확도를 보였으며, 기분석사전을 결합한 경우에는 99.03%의 어절 정확도를 보여서 2.6%의 성능 개선을 달성하였다. 퀴즈 분야의 평가셋으로 실험한 경우에도 기계학습 엔진은 96.14% 성능을 보인 반면, 하이브리드 엔진은 97.24% 성능을 보여서 제안 방법이 다른 분야에도 효과적임을 확인하였다.

융자성 기금관리를 위한 블록체인, 머신러닝 설계 연구 (Design Research of Blockchain, Machine Learning for the management of financing fund)

  • 오락성;박대우
    • 한국정보통신학회논문지
    • /
    • 제23권10호
    • /
    • pp.1201-1208
    • /
    • 2019
  • 정부는 국가정책사업의 원활한 수행을 위하여 국가재정법에 의거 융자성 기금을 운용하고 있다. 그러나, 기금운용절차와 기금관리 측면에서 기금의 오남용, 사후관리 미흡 등 문제점에 노출되어 있다. 본 논문 연구에서는 이러한 문제점을 해결하기 위해 Blockchain과 Machine Learning 등 Fintech 기술을 활용하였다. 기금운용절차는 Consortium Blockchain으로 설계하고, PBFT 협의 Algorithm과 Smart 계약을 적용하는 방안을 제시하였다. 기금관리는 Machine Learning의 Multilayer Artificial Neural Network Model을 활용하는 방안과 결과 값 해석모듈을 함께 제시하였다. 본 Fintech 기술 활용 방안을 도입하게 되면 기금대출의 투명성과 효율성 제고, 신뢰성 확보가 가능하고 정부의 기금제도 개선 및 기금정책 수립에도 기여 할 수 있을 것이다.