• Title/Summary/Keyword: machine learning

Search Result 5,164, Processing Time 0.034 seconds

Machine Learning Approach to Classifying Fatal and Non-Fatal Accidents in Industries (사망사고와 부상사고의 산업재해분류를 위한 기계학습 접근법)

  • Kang, Sungsik;Chang, Seong Rok;Suh, Yongyoon
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.52-60
    • /
    • 2021
  • As the prevention of fatal accidents is considered an essential part of social responsibilities, both government and individual have devoted efforts to mitigate the unsafe conditions and behaviors that facilitate accidents. Several studies have analyzed the factors that cause fatal accidents and compared them to those of non-fatal accidents. However, studies on mathematical and systematic analysis techniques for identifying the features of fatal accidents are rare. Recently, various industrial fields have employed machine learning algorithms. This study aimed to apply machine learning algorithms for the classification of fatal and non-fatal accidents based on the features of each accident. These features were obtained by text mining literature on accidents. The classification was performed using four machine learning algorithms, which are widely used in industrial fields, including logistic regression, decision tree, neural network, and support vector machine algorithms. The results revealed that the machine learning algorithms exhibited a high accuracy for the classification of accidents into the two categories. In addition, the importance of comparing similar cases between fatal and non-fatal accidents was discussed. This study presented a method for classifying accidents using machine learning algorithms based on the reports on previous studies on accidents.

Study on Automatic Bug Triage using Deep Learning (딥 러닝을 이용한 버그 담당자 자동 배정 연구)

  • Lee, Sun-Ro;Kim, Hye-Min;Lee, Chan-Gun;Lee, Ki-Seong
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1156-1164
    • /
    • 2017
  • Existing studies on automatic bug triage were mostly used the method of designing the prediction system based on the machine learning algorithm. Therefore, it can be said that applying a high-performance machine learning model is the core of the performance of the automatic bug triage system. In the related research, machine learning models that have high performance are mainly used, such as SVM and Naïve Bayes. In this paper, we apply Deep Learning, which has recently shown good performance in the field of machine learning, to automatic bug triage and evaluate its performance. Experimental results show that the Deep Learning based Bug Triage system achieves 48% accuracy in active developer experiments, un improvement of up to 69% over than conventional machine learning techniques.

A Study on the Prediction Model for Imported Vehicle Purchase Cancellation Using Machine Learning: Case of H Imported Vehicle Dealers (머신러닝을 이용한 국내 수입 자동차 구매 해약 예측 모델 연구: H 수입차 딜러사 대상으로)

  • Jung, Dong Kun;Lee, Jong Hwa;Lee, Hyun Kyu
    • The Journal of Information Systems
    • /
    • v.30 no.2
    • /
    • pp.105-126
    • /
    • 2021
  • Purpose The purpose of this study is to implement a optimal machine learning model about the cancellation prediction performance in car sales business. It is to apply the data set of accumulated contract, cancellation, and sales information in sales support system(SFA) which is commonly used for sales, customers and inventory management by imported car dealers, to several machine learning models and predict performance of cancellation. Design/methodology/approach This study extracts 29,073 contracts, cancellations, and sales data from 2015 to 2020 accumulated in the sales support system(SFA) for imported car dealers and uses the analysis program Python Jupiter notebook in order to perform data pre-processing, verification, and modeling that is applying and learning to Machine learning model after then the final result was predicted using new data. Findings This study confirmed that cancellation prediction is possible by applying car purchase contract information to machine learning models. It proved the possibility of developing and utilizing a generalized predictive model by using data of imported car sales system with machine learning technology. It can reduce and prevent the sales failure as caring the potential lost customer intensively and it lead to increase sales revenue by predicting the cancellation possibility of individual customers.

A Study on the Work Type of Machine Learning Administrative Service in Metropolitan Government (광역자치단체의 기계학습 행정서비스 업무유형에 관한 연구 -서울시를 중심으로-)

  • Ha, Chung-Yeol;Jung, Jin-Teak
    • Journal of Digital Convergence
    • /
    • v.18 no.12
    • /
    • pp.29-36
    • /
    • 2020
  • The background of this study is that machine learning administrative services are recently attracting attention as a major policy tool for non-face-to-face administrative services in the post-corona era. This study investigated the types of work expected to be effective when introducing machine learning administrative services for Seoul Metropolitan Government officials who are piloting machine learning administrative services. The research method is a machine that can be introduced by organizational unit by distributing and collecting questionnaires for Seoul administrative organizations that have performed machine learning-based administrative services for one month in July 2020 targeting Seoul public officials using machine learning-based administrative services. By analyzing the learning administration service and application service, the business characteristics of each machine learning administration service type such as supervised learning work type, unsupervised learning work type, and reinforced learning work type were analyzed. As a result of the research analysis, it was found that there were significant differences in the characteristics of administrative tasks by supervised and unsupervised learning areas. In particular, it was found that the reinforcement learning domain contains the most appropriate business characteristics for machine learning administrative services. Implications were drawn. The results of this study can be provided as a reference material to practitioners who want to introduce machine learning administration services, and can be used as basic data for research to researchers who want to study machine learning administration services in the future.

Modern Probabilistic Machine Learning and Control Methods for Portfolio Optimization

  • Park, Jooyoung;Lim, Jungdong;Lee, Wonbu;Ji, Seunghyun;Sung, Keehoon;Park, Kyungwook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.73-83
    • /
    • 2014
  • Many recent theoretical developments in the field of machine learning and control have rapidly expanded its relevance to a wide variety of applications. In particular, a variety of portfolio optimization problems have recently been considered as a promising application domain for machine learning and control methods. In highly uncertain and stochastic environments, portfolio optimization can be formulated as optimal decision-making problems, and for these types of problems, approaches based on probabilistic machine learning and control methods are particularly pertinent. In this paper, we consider probabilistic machine learning and control based solutions to a couple of portfolio optimization problems. Simulation results show that these solutions work well when applied to real financial market data.

An Effective Data Model for Forecasting and Analyzing Securities Data

  • Lee, Seung Ho;Shin, Seung Jung
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.32-39
    • /
    • 2016
  • Machine learning is a field of artificial intelligence (AI), and a technology that collects, forecasts, and analyzes securities data is developed upon machine learning. The difference between using machine learning and not using machine learning is that machine learning-seems similar to big data-studies and collects data by itself which big data cannot do. Machine learning can be utilized, for example, to recognize a certain pattern of an object and find a criminal or a vehicle used in a crime. To achieve similar intelligent tasks, data must be more effectively collected than before. In this paper, we propose a method of effectively collecting data.

Machine Learning Based Neighbor Path Selection Model in a Communication Network

  • Lee, Yong-Jin
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.56-61
    • /
    • 2021
  • Neighbor path selection is to pre-select alternate routes in case geographically correlated failures occur simultaneously on the communication network. Conventional heuristic-based algorithms no longer improve solutions because they cannot sufficiently utilize historical failure information. We present a novel solution model for neighbor path selection by using machine learning technique. Our proposed machine learning neighbor path selection (ML-NPS) model is composed of five modules- random graph generation, data set creation, machine learning modeling, neighbor path prediction, and path information acquisition. It is implemented by Python with Keras on Tensorflow and executed on the tiny computer, Raspberry PI 4B. Performance evaluations via numerical simulation show that the neighbor path communication success probability of our model is better than that of the conventional heuristic by 26% on the average.

On successive machine learning process for predicting strength and displacement of rectangular reinforced concrete columns subjected to cyclic loading

  • Bu-seog Ju;Shinyoung Kwag;Sangwoo Lee
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.513-525
    • /
    • 2023
  • Recently, research on predicting the behavior of reinforced concrete (RC) columns using machine learning methods has been actively conducted. However, most studies have focused on predicting the ultimate strength of RC columns using a regression algorithm. Therefore, this study develops a successive machine learning process for predicting multiple nonlinear behaviors of rectangular RC columns. This process consists of three stages: single machine learning, bagging ensemble, and stacking ensemble. In the case of strength prediction, sufficient prediction accuracy is confirmed even in the first stage. In the case of displacement, although sufficient accuracy is not achieved in the first and second stages, the stacking ensemble model in the third stage performs better than the machine learning models in the first and second stages. In addition, the performance of the final prediction models is verified by comparing the backbone curves and hysteresis loops obtained from predicted outputs with actual experimental data.

Trends in image processing techniques applied to corrosion detection and analysis (부식 검출과 분석에 적용한 영상 처리 기술 동향)

  • Beomsoo Kim;Jaesung Kwon;Jeonghyeon Yang
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.353-370
    • /
    • 2023
  • Corrosion detection and analysis is a very important topic in reducing costs and preventing disasters. Recently, image processing techniques have been widely applied to corrosion identification and analysis. In this work, we briefly introduces traditional image processing techniques and machine learning algorithms applied to detect or analyze corrosion in various fields. Recently, machine learning, especially CNN-based algorithms, have been widely applied to corrosion detection. Additionally, research on applying machine learning to region segmentation is very actively underway. The corrosion is reddish and brown in color and has a very irregular shape, so a combination of techniques that consider color and texture, various mathematical techniques, and machine learning algorithms are used to detect and analyze corrosion. We present examples of the application of traditional image processing techniques and machine learning to corrosion detection and analysis.

Identifying the Effects of Repeated Tasks in an Apartment Construction Project Using Machine Learning Algorithm (기계적 학습의 알고리즘을 이용하여 아파트 공사에서 반복 공정의 효과 비교에 관한 연구)

  • Kim, Hyunjoo
    • Journal of KIBIM
    • /
    • v.6 no.4
    • /
    • pp.35-41
    • /
    • 2016
  • Learning effect is an observation that the more times a task is performed, the less time is required to produce the same amount of outcomes. The construction industry heavily relies on repeated tasks where the learning effect is an important measure to be used. However, most construction durations are calculated and applied in real projects without considering the learning effects in each of the repeated activities. This paper applied the learning effect to the repeated activities in a small sized apartment construction project. The result showed that there was about 10 percent of difference in duration (one approach of the total duration with learning effects in 41 days while the other without learning effect in 36.5 days). To make the comparison between the two approaches, a large number of BIM based computer simulations were generated and useful patterns were recognized using machine learning algorithm named Decision Tree (See5). Machine learning is a data-driven approach for pattern recognition based on observational evidence.