• Title/Summary/Keyword: machine data

Search Result 6,410, Processing Time 0.032 seconds

Juvenile Cyber Deviance Factors and Predictive Model Development Using a Mixed Method Approach (사이버비행 요인 파악 및 예측모델 개발: 혼합방법론 접근)

  • Shon, Sae Ah;Shin, Woo Sik;Kim, Hee Woong
    • The Journal of Information Systems
    • /
    • v.30 no.2
    • /
    • pp.29-56
    • /
    • 2021
  • Purpose Cyber deviance of adolescents has become a serious social problem. With a widespread use of smartphones, incidents of cyber deviance have increased in Korea and both quantitative and qualitative damages such as suicide and depression are increasing. Research has been conducted to understand diverse factors that explain adolescents' delinquency in cyber space. However, most previous studies have focused on a single theory or perspective. Therefore, this study aims to comprehensively analyze motivations of juvenile cyber deviance and to develop a predictive model for delinquent adolescents by integrating four different theories on cyber deviance. Design/methodology/approach By using data from Korean Children & Youth Panel Survey 2010, this study extracts 27 potential factors for cyber deivance based on four background theories including general strain, social learning, social bonding, and routine activity theories. Then this study employs econometric analysis to empirically assess the impact of potential factors and utilizes a machine learning approach to predict the likelihood of cyber deviance by adolescents. Findings This study found that general strain factors as well as social learning factors have positive effects on cyber deviance. Routine activity-related factors such as real-life delinquent behaviors and online activities also positively influence the likelihood of cyber diviance. On the other hand, social bonding factors such as community commitment and attachment to community lessen the likelihood of cyber deviance while social factors related to school activities are found to have positive impacts on cyber deviance. This study also found a predictive model using a deep learning algorithm indicates the highest prediction performance. This study contributes to the prevention of cyber deviance of teenagers in practice by understanding motivations for adolescents' delinquency and predicting potential cyber deviants.

Classes in Object-Oriented Modeling (UML): Further Understanding and Abstraction

  • Al-Fedaghi, Sabah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.139-150
    • /
    • 2021
  • Object orientation has become the predominant paradigm for conceptual modeling (e.g., UML), where the notions of class and object form the primitive building blocks of thought. Classes act as templates for objects that have attributes and methods (actions). The modeled systems are not even necessarily software systems: They can be human and artificial systems of many different kinds (e.g., teaching and learning systems). The UML class diagram is described as a central component of model-driven software development. It is the most common diagram in object-oriented models and used to model the static design view of a system. Objects both carry data and execute actions. According to some authorities in modeling, a certain degree of difficulty exists in understanding the semantics of these notions in UML class diagrams. Some researchers claim class diagrams have limited use for conceptual analysis and that they are best used for logical design. Performing conceptual analysis should not concern the ways facts are grouped into structures. Whether a fact will end up in the design as an attribute is not a conceptual issue. UML leads to drilling down into physical design details (e.g., private/public attributes, encapsulated operations, and navigating direction of an association). This paper is a venture to further the understanding of object-orientated concepts as exemplified in UML with the aim of developing a broad comprehension of conceptual modeling fundamentals. Thinging machine (TM) modeling is a new modeling language employed in such an undertaking. TM modeling interlaces structure (components) and actionality where actions infiltrate the attributes as much as the classes. Although space limitations affect some aspects of the class diagram, the concluding assessment of this study reveals the class description is a kind of shorthand for a richer sematic TM construct.

Deterministic Parallelism for Symbolic Execution Programs based on a Name-Freshness Monad Library

  • Ahn, Ki Yung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • In this paper, we extend a generic library framework based on the state monad to exploit deterministic parallelism in a purely functional language Haskell and provide benchmarks for the extended features on a multicore machine. Although purely functional programs are known to be well-suited to exploit parallelism, unintended squential data dependencies could prohibit effective parallelism. Symbolic execution programs usually implement fresh name generation in order to prevent confusion between variables in different scope with the same name. Such implementations are often based on squential state management, working against parallelism. We provide reusable primitives to help developing parallel symbolic execution programs with unbound-genercis, a generic name-binding library for Haskell, avoiding sequential dependencies in fresh name generation. Our parallel extension does not modify the internal implementation of the unbound-generics library, having zero possibility of degrading existing serial implementations of symbolic execution based on unbound-genecrics. Therefore, our extension can be applied only to the parts of source code that need parallel speedup.

Network separation construction method using network virtualization (네트워크 가상화를 이용한 망 분리 구축 방법)

  • Hwang, Seong-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1071-1076
    • /
    • 2020
  • The importance of network separation is due to the use of the Internet with existing business PCs, resulting in an internal information leakage event, and an environment configured to allow servers to access the Internet, which causes service failures with malicious code. In order to overcome this problem, it is necessary to use network virtualization to separate networks and network interconnection systems. Therefore, in this study, the construction area was constructed into the network area for the Internet and the server farm area for the virtualization system, and then classified and constructed into the security system area and the data link system area between networks. In order to prove the excellence of the proposed method, a network separation construction study using network virtualization was conducted based on the basis of VM Density's conservative estimates of program loads and LOBs.

Indian Research on Artificial Neural Networks: A Bibliometric Assessment of Publications Output during 1999-2018

  • Gupta, B.M.;Dhawan, S.M.
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.10 no.4
    • /
    • pp.29-46
    • /
    • 2020
  • The paper describes the quantitative and qualitative dimensions of artificial neural networks (ANN) in India in the global context. The study is based on research publications data (8260) as covered in the Scopus database during 1999-2018. ANN research in India registered 24.52% growth, averaged 11.95 citations per paper, and contributed 9.77% share to the global ANN research. ANN research is skewed as the top 10 countries account for 75.15% of global output. India ranks as the third most productive country in the world. The distribution of research by type of ANN networks reveals that Feed Forward Neural Network type accounted for the highest share (10.18% share), followed by Adaptive Weight Neural Network (5.38% share), Feed Backward Neural Network (2.54% share), etc. ANN research applications across subjects were the largest in medical science and environmental science (11.82% and 10.84% share respectively), followed by materials science, energy, chemical engineering and water resources (from 6.36% to 9.12%), etc. The Indian Institute of Technology, Kharagpur and the Indian Institute of Technology, Roorkee lead the country as the most productive organizations (with 289 and 264 papers). Besides, the Indian Institute of Technology, Kanpur (33.04 and 2.76) and Indian Institute of Technology, Madras (24.26 and 2.03) lead the country as the most impactful organizations in terms of citation per paper and relative citation index. P. Samui and T.N. Singh have been the most productive authors and G.P.S.Raghava (86.21 and 7.21) and K.P. Sudheer (84.88 and 7.1) have been the most impactful authors. Neurocomputing, International Journal of Applied Engineering Research and Applied Soft Computing topped the list of most productive journals.

Study on Detection Technique for Sea Fog by using CCTV Images and Convolutional Neural Network (CCTV 영상과 합성곱 신경망을 활용한 해무 탐지 기법 연구)

  • Kim, Na-Kyeong;Bak, Su-Ho;Jeong, Min-Ji;Hwang, Do-Hyun;Enkhjargal, Unuzaya;Park, Mi-So;Kim, Bo-Ram;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1081-1088
    • /
    • 2020
  • In this paper, the method of detecting sea fog through CCTV image is proposed based on convolutional neural networks. The study data randomly extracted 1,0004 images, sea-fog and not sea-fog, from a total of 11 ports or beaches (Busan Port, Busan New Port, Pyeongtaek Port, Incheon Port, Gunsan Port, Daesan Port, Mokpo Port, Yeosu Gwangyang Port, Ulsan Port, Pohang Port, and Haeundae Beach) based on 1km of visibility. 80% of the total 1,0004 datasets were extracted and used for learning the convolutional neural network model. The model has 16 convolutional layers and 3 fully connected layers, and a convolutional neural network that performs Softmax classification in the last fully connected layer is used. Model accuracy evaluation was performed using the remaining 20%, and the accuracy evaluation result showed a classification accuracy of about 96%.

A Study on Detection and Quantification of a Scramjet Engine Unstart (스크램제트 엔진의 비시동 검출과 정량화 연구)

  • Kim, Hyunwoo;Seo, Hanseok;Kim, Jong-Chan;Sung, Hong-Gye;Park, Ik-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.21-30
    • /
    • 2022
  • The restart of scramjet engine is almost impossible in case its unstart happens during engine operation. Therefore, it is essential to prognosticate the scramjet engine unstart phenomena. A numerical simulation of a scramjet engine is conducted to investigate the unstart process of the scramjet engine by adjusting the backpressure at the isolator outlet to the engine analysis environment. The start and unstart of the engine are identified by applying a support vector machine (SVM) through the data measured by wall pressure so that the locations of the pressure sensors most suitable for the unstart detection are selected. And the operation conditions in which the engine is avoid to be unstarted are quantified to perceive the safety margin.

A Comparative Study on the Methodology of Failure Detection of Reefer Containers Using PCA and Feature Importance (PCA 및 변수 중요도를 활용한 냉동컨테이너 고장 탐지 방법론 비교 연구)

  • Lee, Seunghyun;Park, Sungho;Lee, Seungjae;Lee, Huiwon;Yu, Sungyeol;Lee, Kangbae
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.23-31
    • /
    • 2022
  • This study analyzed the actual frozen container operation data of Starcool provided by H Shipping. Through interviews with H's field experts, only Critical and Fatal Alarms among the four failure alarms were defined as failures, and it was confirmed that using all variables due to the nature of frozen containers resulted in cost inefficiency. Therefore, this study proposes a method for detecting failure of frozen containers through characteristic importance and PCA techniques. To improve the performance of the model, we select variables based on feature importance through tree series models such as XGBoost and LGBoost, and use PCA to reduce the dimension of the entire variables for each model. The boosting-based XGBoost and LGBoost techniques showed that the results of the model proposed in this study improved the reproduction rate by 0.36 and 0.39 respectively compared to the results of supervised learning using all 62 variables.

Analysis of the Valuation Model for the state-of-the-art ICT Technology (첨단 ICT 기술에 대한 가치평가 모델 분석)

  • Oh, Sun-Jin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.705-710
    • /
    • 2021
  • Nowadays, cutting-edge information communication technology is the genuine core technology of the fourth Industrial Revolution and is still making great progress rapidly among various technology fields. The biggest issue in ICT fields is the machine learning based Artificial Intelligence applications using big data in cloud computing environment on the basis of wireless network, and also the technology fields of autonomous control applications such as Autonomous Car or Mobile Robot. Since value of the high-tech ICT technology depends on the surrounded environmental factors and is very flexible, the precise technology valuation method is urgently needed in order to get successful technology transfer, transaction and commercialization. In this research, we analyze the characteristics of the high-tech ICT technology and the main factors in technology transfer or commercialization process, and propose the precise technology valuation method that reflects the characteristics of the ICT technology through phased analysis of the existing technology valuationmodel.

Classification of Service Types using Website Fingerprinting in Anonymous Encrypted Communication Networks (익명 암호통신 네트워크에서의 웹사이트 핑거프린팅을 활용한 서비스 유형 분류)

  • Koo, Dongyoung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.4
    • /
    • pp.127-132
    • /
    • 2022
  • An anonymous encrypted communication networks that make it difficult to identify the trace of a user's access by passing through several virtual computers and/or networks, such as Tor, provides user and data privacy in the process of Internet communications. However, when it comes to abuse for inappropriate purposes, such as sharing of illegal contents, arms trade, etc. through such anonymous encrypted communication networks, it is difficult to detect and take appropriate countermeasures. In this paper, by extending the website fingerprinting technique that can identify access to a specific site even in anonymous encrypted communication, a method for specifying and classifying service types of websites for not only well-known sites but also unknown sites is proposed. This approach can be used to identify hidden sites that can be used for malicious purposes.