• Title/Summary/Keyword: machine data

Search Result 6,279, Processing Time 0.039 seconds

Comparison of CT Exposure Dose Prediction Models Using Machine Learning-based Body Measurement Information (머신러닝 기반 신체 계측정보를 이용한 CT 피폭선량 예측모델 비교)

  • Hong, Dong-Hee
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.503-509
    • /
    • 2020
  • This study aims to develop a patient-specific radiation exposure dose prediction model based on anthropometric data that can be easily measurable during CT examination, and to be used as basic data for DRL setting and radiation dose management system in the future. In addition, among the machine learning algorithms, the most suitable model for predicting exposure doses is presented. The data used in this study were chest CT scan data, and a data set was constructed based on the data including the patient's anthropometric data. In the pre-processing and sample selection of the data, out of the total number of samples of 250 samples, only chest CT scans were performed without using a contrast agent, and 110 samples including height and weight variables were extracted. Of the 110 samples extracted, 66% was used as a training set, and the remaining 44% were used as a test set for verification. The exposure dose was predicted through random forest, linear regression analysis, and SVM algorithm using Orange version 3.26.0, an open software as a machine learning algorithm. Results Algorithm model prediction accuracy was R^2 0.840 for random forest, R^2 0.969 for linear regression analysis, and R^2 0.189 for SVM. As a result of verifying the prediction rate of the algorithm model, the random forest is the highest with R^2 0.986 of the random forest, R^2 0.973 of the linear regression analysis, and R^2 of 0.204 of the SVM, indicating that the model has the best predictive power.

An Effective Smart Greenhouse Data Preprocessing System for Autonomous Machine Learning (자율 기계 학습을 위한 효과적인 스마트 온실 데이터 전처리 시스템)

  • Jongtae Lim;RETITI DIOP EMANE Christopher;Yuna Kim;Jeonghyun Baek;Jaesoo Yoo
    • Smart Media Journal
    • /
    • v.12 no.1
    • /
    • pp.47-53
    • /
    • 2023
  • Recently, research on a smart farm that creates new values by combining information and communication technology(ICT) with agriculture has been actively done. In order for domestic smart farm technology to have productivity at the same level of advanced agricultural countries, automated decision-making using machine learning is necessary. However, current smart greenhouse data collection technologies in our country are not enough to perform big data analysis or machine learning. In this paper, we design and implement a smart greenhouse data preprocessing system for autonomous machine learning. The proposed system applies target data to various preprocessing techniques. And the proposed system evaluate the performance of each preprocessing technique and store optimal preprocessing technique for each data. Stored optimal preprocessing techniques are used to perform preprocessing on newly collected data

Calculated Damage of Italian Ryegrass in Abnormal Climate Based World Meteorological Organization Approach Using Machine Learning

  • Jae Seong Choi;Ji Yung Kim;Moonju Kim;Kyung Il Sung;Byong Wan Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.3
    • /
    • pp.190-198
    • /
    • 2023
  • This study was conducted to calculate the damage of Italian ryegrass (IRG) by abnormal climate using machine learning and present the damage through the map. The IRG data collected 1,384. The climate data was collected from the Korea Meteorological Administration Meteorological data open portal.The machine learning model called xDeepFM was used to detect IRG damage. The damage was calculated using climate data from the Automated Synoptic Observing System (95 sites) by machine learning. The calculation of damage was the difference between the Dry matter yield (DMY)normal and DMYabnormal. The normal climate was set as the 40-year of climate data according to the year of IRG data (1986~2020). The level of abnormal climate was set as a multiple of the standard deviation applying the World Meteorological Organization (WMO) standard. The DMYnormal was ranged from 5,678 to 15,188 kg/ha. The damage of IRG differed according to region and level of abnormal climate with abnormal temperature, precipitation, and wind speed from -1,380 to 1,176, -3 to 2,465, and -830 to 962 kg/ha, respectively. The maximum damage was 1,176 kg/ha when the abnormal temperature was -2 level (+1.04℃), 2,465 kg/ha when the abnormal precipitation was all level and 962 kg/ha when the abnormal wind speed was -2 level (+1.60 ㎧). The damage calculated through the WMO method was presented as an map using QGIS. There was some blank area because there was no climate data. In order to calculate the damage of blank area, it would be possible to use the automatic weather system (AWS), which provides data from more sites than the automated synoptic observing system (ASOS).

Prediction of Uniaxial Compressive Strength of Rock using Shield TBM Machine Data and Machine Learning Technique (쉴드 TBM 기계 데이터 및 머신러닝 기법을 이용한 암석의 일축압축강도 예측)

  • Kim, Tae-Hwan;Ko, Tae Young;Park, Yang Soo;Kim, Taek Kon;Lee, Dae Hyuk
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.214-225
    • /
    • 2020
  • Uniaxial compressive strength (UCS) of rock is one of the important factors to determine the advance speed during shield TBM tunnel excavation. UCS can be obtained through the Geotechnical Data Report (GDR), and it is difficult to measure UCS for all tunneling alignment. Therefore, the purpose of this study is to predict UCS by utilizing TBM machine driving data and machine learning technique. Several machine learning techniques were compared to predict UCS, and it was confirmed the stacking model has the most successful prediction performance. TBM machine data and UCS used in the analysis were obtained from the excavation of rock strata with slurry shield TBMs. The data were divided into 8:2 for training and test and pre-processed including feature selection, scaling, and outlier removal. After completing the hyper-parameter tuning, the stacking model was evaluated with the root-mean-square error (RMSE) and the determination coefficient (R2), and it was found to be 5.556 and 0.943, respectively. Based on the results, the sacking models are considered useful in predicting rock strength with TBM excavation data.

Comparison of Machine Learning-Based Radioisotope Identifiers for Plastic Scintillation Detector

  • Jeon, Byoungil;Kim, Jongyul;Yu, Yonggyun;Moon, Myungkook
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.204-212
    • /
    • 2021
  • Background: Identification of radioisotopes for plastic scintillation detectors is challenging because their spectra have poor energy resolutions and lack photo peaks. To overcome this weakness, many researchers have conducted radioisotope identification studies using machine learning algorithms; however, the effect of data normalization on radioisotope identification has not been addressed yet. Furthermore, studies on machine learning-based radioisotope identifiers for plastic scintillation detectors are limited. Materials and Methods: In this study, machine learning-based radioisotope identifiers were implemented, and their performances according to data normalization methods were compared. Eight classes of radioisotopes consisting of combinations of 22Na, 60Co, and 137Cs, and the background, were defined. The training set was generated by the random sampling technique based on probabilistic density functions acquired by experiments and simulations, and test set was acquired by experiments. Support vector machine (SVM), artificial neural network (ANN), and convolutional neural network (CNN) were implemented as radioisotope identifiers with six data normalization methods, and trained using the generated training set. Results and Discussion: The implemented identifiers were evaluated by test sets acquired by experiments with and without gain shifts to confirm the robustness of the identifiers against the gain shift effect. Among the three machine learning-based radioisotope identifiers, prediction accuracy followed the order SVM > ANN > CNN, while the training time followed the order SVM > ANN > CNN. Conclusion: The prediction accuracy for the combined test sets was highest with the SVM. The CNN exhibited a minimum variation in prediction accuracy for each class, even though it had the lowest prediction accuracy for the combined test sets among three identifiers. The SVM exhibited the highest prediction accuracy for the combined test sets, and its training time was the shortest among three identifiers.

A Study on the Failure Diagnosis of Transfer Robot for Semiconductor Automation Based on Machine Learning Algorithm (머신러닝 알고리즘 기반 반도체 자동화를 위한 이송로봇 고장진단에 대한 연구)

  • Kim, Mi Jin;Ko, Kwang In;Ku, Kyo Mun;Shim, Jae Hong;Kim, Kihyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.65-70
    • /
    • 2022
  • In manufacturing and semiconductor industries, transfer robots increase productivity through accurate and continuous work. Due to the nature of the semiconductor process, there are environments where humans cannot intervene to maintain internal temperature and humidity in a clean room. So, transport robots take responsibility over humans. In such an environment where the manpower of the process is cutting down, the lack of maintenance and management technology of the machine may adversely affect the production, and that's why it is necessary to develop a technology for the machine failure diagnosis system. Therefore, this paper tries to identify various causes of failure of transport robots that are widely used in semiconductor automation, and the Prognostics and Health Management (PHM) method is considered for determining and predicting the process of failures. The robot mainly fails in the driving unit due to long-term repetitive motion, and the core components of the driving unit are motors and gear reducer. A simulation drive unit was manufactured and tested around this component and then applied to 6-axis vertical multi-joint robots used in actual industrial sites. Vibration data was collected for each cause of failure of the robot, and then the collected data was processed through signal processing and frequency analysis. The processed data can determine the fault of the robot by utilizing machine learning algorithms such as SVM (Support Vector Machine) and KNN (K-Nearest Neighbor). As a result, the PHM environment was built based on machine learning algorithms using SVM and KNN, confirming that failure prediction was partially possible.

A Study on Automation of Big Data Quality Diagnosis Using Machine Learning (머신러닝을 이용한 빅데이터 품질진단 자동화에 관한 연구)

  • Lee, Jin-Hyoung
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.75-86
    • /
    • 2017
  • In this study, I propose a method to automate the method to diagnose the quality of big data. The reason for automating the quality diagnosis of Big Data is that as the Fourth Industrial Revolution becomes a issue, there is a growing demand for more volumes of data to be generated and utilized. Data is growing rapidly. However, if it takes a lot of time to diagnose the quality of the data, it can take a long time to utilize the data or the quality of the data may be lowered. If you make decisions or predictions from these low-quality data, then the results will also give you the wrong direction. To solve this problem, I have developed a model that can automate diagnosis for improving the quality of Big Data using machine learning which can quickly diagnose and improve the data. Machine learning is used to automate domain classification tasks to prevent errors that may occur during domain classification and reduce work time. Based on the results of the research, I can contribute to the improvement of data quality to utilize big data by continuing research on the importance of data conversion, learning methods for unlearned data, and development of classification models for each domain.

  • PDF

Big Data Analysis and Prediction of Traffic in Los Angeles

  • Dauletbak, Dalyapraz;Woo, Jongwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.841-854
    • /
    • 2020
  • The paper explains the method to process, analyze and predict traffic patterns in Los Angeles county using Big Data and Machine Learning. The dataset is used from a popular navigating platform in the USA, which tracks information on the road using connected users' devices and also collects reports shared by the users through the app. The dataset mainly consists of information about traffic jams and traffic incidents reported by users, such as road closure, hazards, accidents. The major contribution of this paper is to give a clear view of how the large-scale road traffic data can be stored and processed using the Big Data system - Hadoop and its ecosystem (Hive). In addition, analysis is explained with the help of visuals using Business Intelligence and prediction with classification machine learning model on the sampled traffic data is presented using Azure ML. The process of modeling, as well as results, are interpreted using metrics: accuracy, precision and recall.

Fault Diagnosis and Recovery of a Thermal Error Compensation System in a CNC Machine Tool (CNC 공작기계에서 열변형 오차 보정 시스템의 고장진단 및 복구)

  • 황석현;이진현;양승한
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.135-141
    • /
    • 2000
  • The major role of temperature sensors in thermal error compensation system of machine tools is improving machining accuracy by supplying reliable temperature data on the machine structure. This paper presents a new method for fault diagnosis of temperature sensors and recovery of faulted data to establish the reliability of thermal error compensation system. The detection of fault and its location is based on the correlation coefficients among temperature data from the sensors. The multiple linear regression model which is prepared using complete normal data is also used fur the recovery of faulted data. The effectiveness of this method was tested by comparing the computer simulation results and measured data in a CNC machining center.

  • PDF

A Study on the Development of on-machine Automatic Measuring System (On-machine 자동 측정 시스템 개발에 관한 연구)

  • 구본권;류제구;김종호;이우철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06b
    • /
    • pp.1-7
    • /
    • 1998
  • 본 연구에서는 3차원 솔리드 모델러로부터 Modeling한 후 제작된 model 에 사용자가 원하는 측정 위치를 지정함으로써 자동적으로 측정용 NC Data를 얻을 수 있는 알고리즘을 설계하고 이를 Program화하였다. 3-D Modeler로서 Unigraphics를 사용하였으며, 공작기계는 FANUC Controller를 장착한 Machining Center이다. 측정용 센서는 접촉식 Probe를 사용하였다. 본 연구를 통하여 CAD시스템에서 구축된 Geomaatric Model로부터 직접 측정을 위한 NC data를 얻고 이 data를 가공후의 측정 Data와 비교하여 봄으로써 제품의 가공정밀도를 확인해 볼 수 있으며, 가공시의 간섭 check, 잔삭가공여유, 과절삭등 다양한 정보를 얻을 수 있을 것이다. 향수 지속적인 연구개발을 통하여 data의 통계처리 및 공작기계의 오차 보정등을 고려하여 줌으로써 기계상에서의 측정 data에 대한 신뢰도를 구축할 수 있을 것으로 사료된다.

  • PDF