• Title/Summary/Keyword: machine cell

Search Result 423, Processing Time 0.025 seconds

A Cellular Formation Problem Algorithm Based on Frequency of Used Machine for Cellular Manufacturing System

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.2
    • /
    • pp.71-77
    • /
    • 2016
  • There has been unknown polynomial time algorithm for cellular formation problem (CFP) that is one of the NP-hard problem. Therefore metaheuristic method has been applied this problem to obtain approximated solution. This paper shows the existence of polynomial-time heuristic algorithm in CFP. The proposed algorithm performs coarse-grained and fine-grained cell formation process. In coarse-grained cell formation process, the cell can be formed in accordance with machine frequently used that is the number of other products use same machine with special product. As a result, the machine can be assigned to most used cell. In fine-grained process, the product and machine are moved into other cell that has a improved grouping efficiency. For 35 experimental data, this heuristic algorithm performs better grouping efficiency for 12 data than best known of meta-heuristic methods.

An Efficient Cell Formation Approach for a Cellular Manufacturing System Considering Operation Sequences (작업순서를 고려한 효율적인 제조셀 형성방법)

  • Choi, Dong-Soon;Chung, Byung-Hee
    • IE interfaces
    • /
    • v.10 no.3
    • /
    • pp.189-196
    • /
    • 1997
  • This paper presents a cell formation approach for a cellular manufacturing system to minimize the inter-cell moves considering operation sequences. Two new factors are introduced: (1)flow-similarity(FS) for integrating direct/indirect inter-machine flow and similarity (2)machine cell-part moves (CPM) for exactly computing inter-cell moves. FS is used for combining machines and CPM is used for assigning the parts to the preliminary machine cells. In addition, we develop an aggregated heuristic algorithm to form manufacturing machine cells and assign the parts to those cells based on these concepts. We use performance criterion called total inter-cell moves(TICM), which is the total material flow between internal cells and external cells. Results of computational tests on a number of randomly generated test problems show that the suggested heuristic is superior to existing methods.

  • PDF

Design of Manufacturing Cell and Cellular Layout based on Genetic Algorithm (유전 알고리듬에 기초한 제조셀과 셀 배치의 설계)

  • Cho, Kyu-Kab;Lee, Byung-Uk
    • IE interfaces
    • /
    • v.14 no.1
    • /
    • pp.20-29
    • /
    • 2001
  • This paper presents a concurrent design approach that deals with manufacturing cell formation and cellular layout in Cellular Manufacturing System. Manufacturing cell formation is to group machines into machine cells dedicated to manufacture of part families, and cellular layout problem determines layout of the manufacturing cells within shop and layout of the machines within a cell. In this paper, a concurrent approach for design of machine cell and cellular layout is developed considering manufacturing parameters such as alternative process plans, alternative machines, production volume and processing time of part, and cost per unit time of operation. A mathematical model which minimizes total cost consisting of machine installation cost, machine operating cost, and intercell and intracell movements cost of part is proposed. A hybrid method based on genetic algorithm is proposed to solve the manufacturing cell formation and cellular layout design problem concurrently. The performance of the hybrid method is examined on several problems.

  • PDF

An Integrated Model for Simultaneous Formation of Machine Cells and Part Families in FMS : Using Machine- Operation Incidence Matrix and Part - Operation Incidence Matrix (FMS에서 기계셀과 부품그룹의 동시형성을 위한 통합모형 : 기계-공정 빈도행렬과 부품-공정 빈도행렬의 이용)

  • 정병희;윤창원
    • Korean Management Science Review
    • /
    • v.12 no.1
    • /
    • pp.1-17
    • /
    • 1995
  • The success of cell manufacturing applications in FMS rests on the effective cell formation to maintain the independent relations both between machine cells and between part families. This paper presents an integrated method for concurrent formation of cells and families with no E.E (Exceptional Element) in FMS with alternative routings. To determine the maximum number of cell and family with no E.E, mathematical conditions and properties are derived. New concept of nonsimilarity is introduced for each machine and part based on machine-operation incidence matrix and part-operation incidence matrix. To concurrently form the cells and families, integer programming based mathematical models are developed. For the predetermined number of cell or family, model I is used to identify whether E.E exists or not. Model II forms cells and families considering only nonsimilarity. But model III can consider nonsimilarity and processing times. The proposed method is tested and proved by using numerical examples.

  • PDF

Power Conversion System and Technical Trend of Fuel Cell Electric Vehicles (FCEV용 전력변환장치와 FCEV의 기술동향)

  • Choi U. D.;Min B. D.;Lee J. C.;Kim J. C.;Lee J. P.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.593-597
    • /
    • 2002
  • The power conversion system for Fuel Cell Electric Vehicle(FCEV), technical trend, and a various type of Fuel Cell and its characteristics are presented. Especially, this paper is focused on the control methods of power conversion devices applied for the Fuel Cell Electric Vehicle, configuration of power system and operation mode of the bidirectional DC/DC converter. The prevalent topology for the power conversion systems, simulation results and development a tendency of FCEV and it's market investigations are introduced.

  • PDF

An Algorithm for Minimizing Exceptional Elements Considering Machine Duplication Cost and Space Constraint in Cellular Manufacturing System (기계중복비용과 공간제약을 고려한 예외적 요소의 최소화 알고리듬)

  • Chang, Ik;Chung, Byung-hee
    • IE interfaces
    • /
    • v.12 no.1
    • /
    • pp.10-18
    • /
    • 1999
  • Job shop manufacturing environments are using the concept of cellular manufacturing systems(CMS) which has several advantages in reducing production lead times, setup times, work-in-process, etc. Utilizing the similarities between cell-machine, part-machine, and the shape/size of parts, CMS can group machines and parts resulting in improved efficiency of this system. However, when grouping machines and parts in machine cells, there inevitably occurs exceptional elements(EEs), which can not operate in the same machine cell. Minimizing these EEs in CMS is a critical point that improving production efficiency. Constraints in machine duplication cost, machining process technology, machining capability, and factory space limitations are main problems that prevent achiving the goal of maintaining an ideal CMS environment. This paper presents an algorithm that minimizes EEs under the constraints of machine duplication cost and factory space limitation. Developing exceptional operation similarity(EOS) by cell-machine incidence matrix and part-machine incidence matrix, it brings the machine cells that operate the parts or not. A mathematical model to minimize machine duplication is developed by EOS, followed by a heuristic algorithm in order to reflect dynamic situation resulting from minimizing exceptional elements process and the mathematical model. A numerical example is provided to illustrate the algorithm.

  • PDF

Development of a Robotic Transplanter for Bedding Plants(I) - Machine Vision System - (육묘용 로봇 이식기의 개발(I) - 기계시각 시스템 -)

  • 류관희;김기영;이희환;황호준
    • Journal of Biosystems Engineering
    • /
    • v.22 no.3
    • /
    • pp.317-324
    • /
    • 1997
  • This study was conducted to develope a machine vision system for a robotic transplanter for bedding plants. Specific objectives of this study were 1) to get coordinates of the healthy seedlings in high-density plug tray, and 2) to get the angle of the leaves of the healthy seedlings to avoid the damage to seedlings by gripper. Results of this study were summarized as follows. (1) The machine vision system of a robotic transplanter was developed. (2) Success rates of detecting empty cell and bad seedlings for 72-cell and 128-cell plug-trays were 98.8% and 94, 9% respectively. (3) Success rates of calculating the angle of leaves fer 72-cell and 128-cell plug-trays were 93.5% and 91.0% respectively.

  • PDF

Development of a Robotic Transplanter for Bedding Plants (I)-Development of the Machine Vision System of a Robotic Transplanter- (육묘용 로봇 이식기의 개발(I)-로봇 이식기의 기계시각 시스템의 개발-)

  • 류관희;이희환;김기영;황호준
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1997.12a
    • /
    • pp.392-400
    • /
    • 1997
  • This study was conducted to develope the machine vision system of a robotic transplanter for bedding plants. Specific objectives of this study were 1) to get coordinates of the healthy seedlings except empty cells and bad seedlings in high-density plug tray, and 2) to get the angle of the leaves of the healthy seedlings to avoid damage to the seedlings by gripper. The results of this study are summarized as follows. (1) The machine vision system of a robotic transplanter was developed. (2) The success rates of detecting empty cell and bad seedlings in 72-cell and 128-cell plug trays were 98.8% and 94.9% respectively. (3) The success rates of calculating the angle of leaves in 72-cell and 128-cell plug trays were 93.5% and 91.0% respectively.

  • PDF

A Method of Eliminating Exceptional Elements Attaining Minimum Machine Duplications and Intercell Moves In Cellular Manufacturing Systems (기계중복과 셀간 이동수의 최소화가 가능한 예외적 요소의 제거 방법 : 비용 및 설치대수 제약 고려)

  • Jang, Ik;Yun, Chang-Won;Chung, Byung-Hee
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.4
    • /
    • pp.87-96
    • /
    • 1998
  • Using the concept of cellular manufacturing systems(CMS) in job shop manufacturing system is one of the most innovative approaches to improving plant productivity. However. several constraints in machine duplication cost, machining capability, cell space capacity, intercell moves and exceptional elements(EEs) are main problems that prevent achieving the goal of maintaining an ideal CMS environment. Minimizing intercell part traffics and EEs are the main objective of the cell formation problem because it is a critical point that improving production efficiency. Because the intercell moves could be changed according to the sequence of operation, it should be considered in assigning parts and machines to machine ceil. This paper presents a method that eliminates EEs under the constraints of machine duplication cost and ceil space capacity attaining two goals of minimizing machine duplications and minimizing intercell moves simultaneously. Developing an algorithm that calculates the machine duplications by cell-machine incidence matrix and part-machine Incidence matrix, and calculates the exact intercell moves considering the sequence of operation. Based on the number of machine duplications and exact intercell moves, the goal programming model which satisfying minimum machine duplications and minimum intercell moves is developed. A linear programming model is suggested that could calculates more effectively without damaging optimal solution. A numerical example is provided to illustrate these methods.

  • PDF

A manufacturing cell design model and cell design support system based on workload (작업부하에 의한 생산셀 설계 모델과 셀설계지원시스템)

  • 문치웅;이상용
    • Korean Management Science Review
    • /
    • v.12 no.1
    • /
    • pp.51-60
    • /
    • 1995
  • This paper presents a workload based model and cell design support system (CDSS) in manufacturing cell design. The proposed model consider manufacturing factor such as machine capacity, production volume, process time, and cell size. Based on those information, workload is calculated and according to the workload, the relationship between machine and part is represented by the workload matrix. To form the manufacturing cell, correlation similarity coefficient (CSC) among machines are calculated and a pair of machines that has the highest value of CSC is assigned to a machine cell. Repeat the above steps until the desired manufacturing cells are obtained. Finally, a cell design support system that could increase the efficiency in the application of a proposed model is developed. The proposed model and CDSS are illustrated by a numerical example.

  • PDF