본 논문에서는 다각형 용기의 품질 향상을 위한 딥러닝 구조 개발을 제안한다. 딥러닝 구조는 convolution 층, bottleneck 층, fully connect 층, softmax 층 등으로 구성된다. Convolution 층은 입력 이미지 또는 이전 층의 특징 이미지를 여러 특징 필터와 convolution 3x3 연산하여 특징 이미지를 얻어 내는 층이다. Bottleneck 층은 convolution 층을 통해 추출된 특징 이미지상의 특징들 중에서 최적의 특징들만 선별하여 convolution 1x1 ReLU로 채널을 감소시키고convolution 3x3 ReLU를 실시한다. Bottleneck 층을 거친 후에 수행되는 global average pooling 연산과정은 convolution 층을 통해 추출된 특징 이미지의 특징들 중에서 최적의 특징들만 선별하여 특징 이미지의 크기를 감소시킨다. Fully connect 층은 6개의 fully connect layer를 거쳐 출력 데이터가 산출된다. Softmax 층은 입력층 노드의 값과 연산을 진행하려는 목표 노드 사이의 가중치와 곱을 하여 합하고 활성화 함수를 통해 0~1 사이의 값으로 변환한다. 학습이 완료된 후에 인식 과정에서는 학습 과정과 마찬가지로 카메라를 이용한 이미지 획득, 측정 위치 검출, 딥러닝을 활용한 비원형 유리병 분류 등을 수행하여 비원형 유리병을 분류한다. 제안된 다각형 용기의 품질 향상을 위한 딥러닝 구조의 성능을 평가하기 위하여 공인시험기관에서 실험한 결과, 양품/불량 판별 정확도 99%로 세계최고 수준과 동일한 수준으로 산출되었다. 검사 소요 시간은 평균 1.7초로 비원형 머신비전 시스템을 사용하는 생산 공정의 가동 시간 기준 내로 산출되었다. 따라서 본 본문에서 제안한 다각형 용기의 품질 향상을 위한 딥러닝 구조의 성능의 그 효용성이 입증되었다.
최근 지구온난화에 따른 기후변화 문제의 심각성이 커지면서 국가 온실가스 배출량을 상쇄시킬 수 있는 산림의 탄소흡수에 대한 중요성이 높아지고 있으며, 기후변화협약에 따라 국가의 산림 탄소흡수량을 국지적인 수준에서 과학적이고 정밀하게 산출할 것이 요구되고 있다. 본 연구에서는 위성영상과 일기상 자료를 함께 활용함으로써 산림 광합성의 민감한 일변화를 반영하고, 안정된 산림으로서 대표성을 가지는 광릉숲(Gwangneung Forest) 극상림(climax forest)의 플럭스관측 자료를 참조하여 GPP(gross primary production) 재현 모델을 수립하고, 수종 및 임령에 따른 탄소흡수량 조견표를 적용하여, 우리나라의 국지지역에 최적화된 Tier 2.5 수준의 일일 탄소흡수능 격자자료를 산출하였다. 2013년 1월 1일부터 2015년 12월 31일까지 1,095일간의 실험에서, 일일 기준탄소흡수능(reference amount of CO2 absorption, RACA) 산출 모델은 상관계수 0.948의 높은 정확도를 나타냈으므로, 향후 Tier 3 수준의 일일 실제탄소흡수능(actual amount of CO2 absorption, AACA)을 정확히 산출하기 위해서는 장기간의 상세산림조사 자료와의 결합이 필요할 것이다.
해빙(sea ice)은 현재 전 세계 해양 면적의 약 7%를 차지하고 있으며 계절적, 연간 변화를 보이고 주로 극지방과 고위도 지역에 나타난다. 해빙은 대규모 공간 규모에서 다양한 종류로 형성되며 석유 및 가스탐사, 기타 해양활동이 급속히 증가하는 발해해는 해양 구조물 피해 및 해상 운송, 해양 생태계에 심각한 영향을 미치기 때문에 시계열 모니터링을 통해 해빙의 면적 및 유형 분류를 분석하는 것이 매우 중요하다. 현재 고해상도 위성영상 및 현장 실측 자료를 바탕으로 해빙의 종류 및 영역에 대한 연구가 진행되고 있지만 현장 실측자료를 획득하여 해빙 모니터링에는 한계가 있다. 고해상도 광학 위성영상은 광범위에서 해빙의 유형을 육안으로 탐지하고 식별할 수 있고, 짧은 시간해상도를 갖는 해양위성인 천리안 2B호(Geostationary Ocean Color Imager-II, GOCI-II)를 이용하여 해빙 모니터링의 공백을 보완할 수 있다. 이 연구에서는 고해상도 광학위성영상을 이용하여 생산된 학습자료를 기반으로 규칙기반 기계학습 모델을 훈련시키고 이를 GOCI-II 영상에서 탐지를 수행함으로써, 해빙 모니터링 활용 가능성을 알아보고자 하였다. 학습 자료는 발해(Bohai Sea)의 2021-2022년 랴오둥만(Liaodong Bay)을 대상으로 추출하였으며, GOCI-II를 활용한 Random Forest (RF) 모델을 구축하여 기존 normalized difference snow index (NDSI) 지수 기반 및 고해상도 위성영상에서 획득된 해빙 영역과 정성적 및 정량적 비교 분석하였다. 본 연구 결과 해빙의 영역을 과소평가한 NDSI 지수 기반 결과와 달리 비교적 자세한 해빙 영역을 탐지하였으며 유형별 해빙을 분류할 수 있어 해빙 모니터링이 가능함을 확인하였다. 향후 지속적인 학습 자료 및 해빙형성에 영향인자 구축을 통해 탐지 모델의 정확도를 향상시킨다면 고위도 해양 지역에서 해빙 모니터링 분야에 활용할 수 있을 것으로 기대된다.
누구나 본인이 사용한 제품이나, 이용한 서비스에 대한 후기를 자유롭게 인터넷에 작성할 수 있고, 이러한 데이터의 양은 점점 더 많아지고 있다. 감성분석은 사용자가 생성한 온라인 텍스트 속에 내포된 감성 및 감정을 식별하기 위해 사용된다. 본 연구는 다양한 데이터 도메인 중 영화 리뷰를 분석 대상으로 한다. 영화 리뷰를 이용한 기존 연구에서는 종종 리뷰 평점을 관객의 감성으로 동일시하여 감성분석에 이용한다. 그러나 리뷰 내용과 평점의 실제적 극성 정도가 항상 일치하는 것은 아니기 때문에 연구의 정확성에 한계가 발생할 수 있다. 이에 본 연구에서는 기계학습 기반의 감성 분류기를 구축하고, 이를 통해 리뷰의 감성점수를 산출하여 리뷰에서 나타나는 감성의 수치화를 목표로 한다. 나아가 산출된 감성점수를 이용하여 리뷰와 영화 흥행 간의 연관성을 살펴보았다. 감성분석 모델은 지지벡터 분류기와 신경망을 이용해 구축되었고, 총 1만 건의 영화 리뷰를 학습용 데이터로 하였다. 감성분석은 총 175편의 영화에 대한 1,258,538개의 리뷰에 적용하였다. 리뷰의 평점과 흥행, 그리고 감성점수와 흥행과의 연관성은 상관분석을 통해 살펴보았고, t-검정으로 두 지표의 평균차를 비교하여 감성점수의 활용성을 검증하였다. 연구 결과, 본 연구에서 제시하는 모델 구축 방법은 나이브 베이즈 분류기로 구축한 모델보다 높은 정확성을 보였다. 상관분석 결과로는, 영화의 주간 평균 평점과 관객 수 간의 유의미한 양의 상관관계가 나타났고, 감성점수와 관객 수 간의 상관분석에서도 유사한 결과가 도출되었다. 이에 두 지표간의 평균을 이용한 t-검정을 수행하고, 이를 바탕으로 산출한 감성점수를 리뷰 평점의 역할을 할 수 있는 지표로써 활용 가능함을 검증하였다. 나아가 검증된 결론을 근거로, 트위터에서 영화를 언급한 트윗을 수집하여 감성분석을 적용한 결과를 살펴봄으로써 감성분석 모델의 활용 방안을 모색하였다. 전체적 실험 및 검증의 과정을 통해 본 연구는 감성분석 연구에 있어 개선된 감성 분류 방법을 제시할 수 있음을 보였고, 이러한 점에서 연구의 의의가 있다.
환자 호흡할 때 흉 복부 내부에 있는 장기의 위치는 주기적으로 변한다. 이에 따라 방사선치료 동안 종양에 대한 선량불확도가 발생하게 되며, 불확도를 줄이기 위한 여러 방사선치료방법이 제시되고 있다. 호흡연동방사선치료는 특정 위상 또는 진폭에만 방사선을 조사하는 방법으로 불필요한 피폭선량은 줄일 수 있는 장점이 있지만 긴 치료 시간과 노력이 필요하다는 단점이 있다. 호흡연동방사선치료 중 회전세기조절방사선치료(respiratory gated Volumetric Modulated Arc Therapy, VMAT)는 다른 호흡연동치료시스템에 비해 치료 시간이 짧다는 장점이 있기 때문에 본 연구는 respiratory gated VMAT 치료 선량의 정확성을 검증하여 임상 적용의 적절성을 평가하고자 한다. 본 연구는 총 6개의 VMAT 치료계획(Eclipse, ver. 8.6, Palo Alto, USA)을 토대로 수행되었으며, 각각의 치료계획은 AAA 알고리즘을 이용해서 선량이 계산되었다. 환자의 호흡운동을 구현하기 위해 환자 테이블 위에 1차원운동팬텀이 사용되었으며, 영상 기반 추적 시스템(Real-time Position Management, RPM, Varian Medical Systems, Palo Alto, USA)을 통해 운동 주기 신호를 획득하였다. 또한, 2차원-이온함-배열(MatriXX, IBA, Germany) 측정기를 이용하여 특정 호흡 신호 위상에 따른 전달 선량을 측정하였다. 측정된 선량과 치료 계획된 선량을 정성적인 분석을 위해 상용화되어 있는 선량분석용 프로그램(I'mRT, IBA, Germany)을 통해 2차원 선량분포를 0에서 1사이의 감마지표(Gamma index) 비교 결과 모든 케이스에서 97% 이상의 일치함을 확인하였다. 따라서 호흡연동 회전세기조절 방사선치료는 호흡연동방사선치료의 단점인 시간적인 제약을 일정 부분 해소할 수 있었으며 2차원 선량분포 비교 결과 오차값 3%이내의 정확도에서 환자정도관리 수준을 만족하였고 임상적용이 가능함을 확인하였다.
P300 문자입력기에 사용되는 대표적인 자극제시방법은 행-열 패러다임(RCP)이다. 그러나 RCP는 근접-혼동 오류와 이중-깜박임 문제를 가지고 있다. 본 연구에서는 RCP가 가지고 있는 두 가지 오류의 원천을 효과적으로 통제하는 하위블록 패러다임(SBP)을 제안하고 검증하였다. 15명의 실험참가자에게 RCP와 SBP를 모두 사용하여 문자를 입력하도록 하였다. 뇌파는 Fz와 Cz, Pz, P3, P4, PO7, PO8에서 측정하였다. 각 패러다임은 분류기를 학습시키기 위한 훈련단계와 문자입력기의 성능을 평가하기 위한 검사단계로 구성되어 있다. 훈련단계에서 18개의 문자를 입력하였으며, 검사단계에서 5명은 50개의 단어를 입력하였고 나머지 10명은 25개의 단어를 입력하였다. 정확도를 산출한 결과, SBP의 정확도는 83.73%로 RCP의 정확도 66.40%보다 통계적으로 유의하게 더 높았다. Pz에서 측정한 ERP를 분석하였을 때, 목표자극에 대한 정적 정점의 진폭이 RCP보다 SBP에서 더 크게 나타나 실험참가자들이 SBP에서 특정 문자에 더 많은 주의를 집중한 것으로 보인다. P300 문자입력기에 대한 사용용이성을 7점 척도로 측정하였을 때, SBP가 RCP보다 더 사용하기 쉬운 것으로 나타났다. 특히 RCP의 사용용이성은 대부분의 실험참가자들이 '힘들었다'는 범주에 응답한 반면, SBP의 사용용이성은 모든 피험자들이 '보통'과 '쉬웠다'의 범주에 응답하였다. 전반적으로 SBP가 RCP보다 우월한 것으로 평가되었으며, 논의에 SBP의 한계점에 대해서 기술하였다.
오늘날 원격탐지기술의 발달로 인해, 산림지역과 같이 피복 분류작업이 난해한 지역을 비롯한 광범위한 지역에서의 세밀한 변화탐지를 위한 고해상도 위성영상 취득이 가능해졌다. 하지만, 고해상도 영상에 대한 시계열분석의 과정에서 많은 양의 지상 관측 데이터가 요구된다. 본 연구에서는 토지피복도를 지상 관측데이터로 활용한 위성영상 분류 방법의 가능성을 시험하였다. 연구대상지는 강원도 원주시이며, 산림지역과 시가화지역이 공존하는 공간이다. 연구 자료는 2015년 3월에 촬영된 KOMPSAT-3A 영상과 2017년도 토지피복도를 이용하여 분류를 시도하였다. 서포트벡터머신(SVM)과 랜덤포레스트(RF)의 두 가지 상이한 화소기반 분류기법을 적용하여 대상지에 대한 피복분류의 분류정확도를 비교 분석하였으며, SVM 분석의 경우 다수 분석(Majority analysis)을 후속 진행하였다. 분석대상은 산림식생만 포함한 지역과 연구대상지 전지역으로 구분하였고, 대상 면적이 협소한 습지는 분석과정에서 제외하였다. 분류 결과는 오차 행렬의 전체 정확도가 두 가지 분류대상에 대해 RF 기법이 SVM 기법보다 더 나은 것으로 나타났다. 산림지역만을 대상으로 한 경우, RF 기법이 SVM 기법에 비해 18.3% 높은 값을 나타낸 반면, 전체지역을 대상으로 한 경우는 둘 사이의 간격이 5.5%로 줄어들었다. SVM 기법에 다수 분석 (Majority analysis)을 추가로 실시한 경우, 1% 정도의 정확도 향상이 나타났다. RF 기법은 산림지역의 활엽수를 분석해 내는데 상당히 효과적이었지만, 다른 대상에 대해서는 SVM 기법이 더 나은 결과를 나타내었다. 본 연구는 고해상도 단일시기 영상에 대한 화소 기반의 분류기법을 시험한 것으로, 추후 시계열분석 및 객체기반 분류기법의 추가적인 적용으로 향상된 정확도와 신뢰도를 얻을 수 있을 것으로 판단된다. 이 연구의 방법론은 시공간적으로 고해상도 분석결과를 제공함으로써, 대면적의 토지계획에 유용할 것으로 기대된다.
재범예측은 70년대 이전부터 전문가들에 의해서 꾸준히 연구되어온 분야지만, 최근 재범에 의한 범죄가 꾸준히 증가하면서 재범예측의 중요성이 커지고 있다. 특히 미국과 캐나다에서 재판이나 가석방심사 시 재범 위험 평가 보고서를 결정적인 기준으로 채택하게 된 90년대를 기점으로 재범예측에 관한 연구가 활발해졌으며, 비슷한 시기에 국내에서도 재범요인에 관한 실증적인 연구가 시작되었다. 지금까지 대부분의 재범예측 연구는 재범요인 분석이나 재범예측의 정확성을 높이는 연구에 집중된 경향을 보이고 있다. 그러나 재범 예측에는 비대칭 오류 비용 구조가 있기 때문에 경우에 따라 예측 정확도를 최대화함과 동시에 예측 오분류 비용을 최소화하는 연구도 중요한 의미를 가진다. 일반적으로 재범을 저지르지 않을 사람을 재범을 저지를 것으로 오분류하는 비용은 재범을 저지를 사람을 재범을 저지르지 않을 것으로 오분류하는 비용보다 낮다. 전자는 추가적인 감시 비용만 증가되는 반면, 후자는 범죄 발생에 따른 막대한 사회적, 경제적 비용을 야기하기 때문이다. 이러한 비대칭비용에 따른 비용 경제성을 반영하여, 본 연구에서 비대칭 오류 비용을 고려한 XGBoost 기반 재범 예측모델을 제안한다. 모델의 첫 단계에서 최근 데이터 마이닝 분야에서 높은 성능으로 각광받고 있는 앙상블 기법, XGBoost를 적용하였고, XGBoost의 결과를 로지스틱 회귀 분석(Logistic Regression Analysis), 의사결정나무(Decision Trees), 인공신경망(Artificial Neural Networks), 서포트 벡터 머신(Support Vector Machine)과 같은 다양한 예측 기법과 비교하였다. 다음 단계에서 임계치의 최적화를 통해 FNE(False Negative Error)와 FPE(False Positive Error)의 가중 평균인 전체 오분류 비용을 최소화한다. 이후 모델의 유용성을 검증하기 위해 모델을 실제 재범예측 데이터셋에 적용하여 XGBoost 모델이 다른 비교 모델 보다 우수한 예측 정확도를 보일 뿐 아니라 오분류 비용도 가장 효과적으로 낮춘다는 점을 확인하였다.
온도와 상대습도는 작물 재배에 있어서 중요한 요소로써, 수량과 품질의 증대를 위해서는 적절히 제어 되어야 한다. 그리고 정확한 환경 제어를 위해서는 환경이 어떻게 변화할지 예측할 필요가 있다. 본 연구의 목적은 현시점의 환경 데이터를 이용한 다층 퍼셉트론(multilayer perceptrons, MLP)을 기반으로 미래 시점의 기온 및 상대습도를 예측하는 것이다. MLP 학습에 필요한 데이터는 어윈 망고(Mangifera indica cv. Irwin)을 재배하는 8연동 온실($1,032m^2$)에서 2016년 10월 1일부터 2018년 2월 28일까지 10분 간격으로 수집되었다. MLP는 온실내부 환경 데이터, 온실 외 기상 데이터, 온실 내 장치의 설정 및 작동 값을 사용하여 10~120분 후 기온 및 상대습도를 예측하기 위한 학습을 진행하였다. 사계절이 뚜렷한 우리나라의 계절에 따른 예측 정확도를 분석하기 위해서 테스트 데이터로 계절별로 3일간의 데이터를 사용했다. MLP는 기온의 경우 은닉층이 4개, 노드 수가 128개일 때($R^2=0.988$), 상대습도는 은닉층 4개, 노드 수 64개에서 가장 높은 정확도를 보였다($R^2=0.990$). MLP 특성상 예측 시점이 멀어질수록 정확도는 감소하였지만, 계절에 따른 환경 변화에 무관하게 기온과 상대습도를 적절히 예측하였다. 그러나 온실 내 환경 제어 요소 중 분무 관수처럼 특이적인 데이터의 경우, 학습 데이터 수가 적기 때문에 예측 정확도가 낮았다. 본 연구에서는 MLP의 최적화를 통해서 기온 및 상대습도를 적절히 예측하였지만 실험에 사용된 온실에만 국한되었다. 따라서 보다 일반화를 위해서 다양한 장소의 온실 데이터 이용과 이에 따른 신경망 구조의 변형이 필요하다.
농업기상재해 조기경보시스템에서는 일 최대순간 풍속에 과수의 낙과 피해 임계풍속을 대입하여 농작물의 풍해 위험을 예측, 자원농가에게 제공하고 있다. 강풍의 위험 예측확률을 높이기 위한 방법으로써, 기존 방식에서 '안전'으로 분류된 데이터들 중 실제로는 풍해위험이 있는 경우를 찾아내는 인공신경망 이항분류 기법을 도입하였다. 학습데이터는 전라남북도와 경북 및 경남 일부지역의 총 210개소 기상청 종관 및 방재기상관측지점에서 수집된 2019년 전체 일별 풍속자료이며, 최적 모델 도출을 위한 검증데이터는 동일지점의 2020년 1월 1일~12월 12일 자료를, 인공신경망 기법 사용 전/후의 풍해위험예측 성능 평가는 2020년 12월 13일~2021년 2월 18일까지의 자료를 사용하였다. 풍해위험 임계풍속은 과수의 낙과 피해기준으로 주로 사용되고 있는 11m/s를 설정하였다. 또한 2020년 동일 기간의 일 최대순간풍속 실측값으로 Weibull 분포를 작성한 후, 추정값과 임계풍속간의 편차를 이용하여 누적확률값을 계산, 풍해 경보에서 한 단계 낮은 주의보를 판단하고 인공신경망 기법 적용 결과와 비교하였다. 평가기간 중 기존의 풍해 위험 탐지확률은 65.36%였으나 인공신경망 기법으로 재분류 과정을 거친 후 93.62%로 크게 개선되었다. 반면, 오보율이 함께 증가되어(13.46% → 37.64%), 전반적인 정확도는 감소하였다. 한편 Weibull 분포를 이용하여 풍해주의보 구간을 두었을 때는 정확도 83.46%으로 인공신경망 기법에 비해 전반적인 예측 정확도는 더 높았던 반면 위험 탐지확률은 88.79%로 더 낮게 나타났다. 따라서, 상대적으로 위험예보의 미예측이 중대한 문제가 되는 사례에서 인공신경망 방식이 유용할 것으로 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.