• Title/Summary/Keyword: machinability

Search Result 421, Processing Time 0.029 seconds

The Effect of Drawing and Heat Treatment on Fatigue Life and Machinability in Free Machining Steel (쾌삭강의 피로수명 및 절삭성에 미치는 인발-열처리의 영향)

  • Suh, C.H.;Kim, D.B.;Oh, S.K.;Jung, Y.C.;Park, M.K.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.95-100
    • /
    • 2010
  • Drawing and normalizing are efficient means for controlling strength, fatigue and machinability of free machining steel. Normally strength and machinability are conflicting properties which need to be optimized. In this study, the effects of normalizing temperature and reduction of area on strength, fatigue and machinability were investigated. Fine grains were generated at lower normalizing temperature and fatigue life was increased with decreasing grain size. Matrix was work hardened and elongated with increasing reduction of area. Inclusions also were elongated and cross-sectional area of inclusions along drawing axis was decreased. The effects of work hardening and grain size on fatigue life were significant, but only work hardening affected machinability. Shape and distribution of inclusions after drawing had little effect on fatigue life and machinability.

Valve Seat Insert Material with Good Machinability

  • Kawata, Hideaki;Maki, Kunio
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.403-404
    • /
    • 2006
  • Sintered materials have been applied widely in Valve Seat Inserts (VSI). The demands for VSIs are not only good heat and wear resistance but also good machinability. The sintered materials, which are made of a mixture of manganese containing iron powder and certain types of sulfide powder, have superior machinability due to precipitation of the fine MnS particles in the matrix. This report introduces a new VSI material, which has both superior machinability, and wear resistance due to applies of this "MnS precipitation" technique.

  • PDF

Effect of Microstructure on the Machinability of Cast Iron (주철의 절삭성에 미치는 조직의 영향)

  • Park, Hee-Sang;Lee, Sang-Young;Kim, Jeong-Suk;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.21 no.6
    • /
    • pp.350-358
    • /
    • 2001
  • The machinability of cast iron is closely related to its microstructural property. In this study, the effect of graphite mophology and matrix microstructure on machinability in several commercial cast irons(GC 25, GCD 45, GCD 50, GCD 70, GCD HSMo, GCMP) was investigated. To estimate the machinability, turning test was carried out under conditions of spindle speed 80m/min, depth of cut 0.25mm, feed 0.16mm/rev and cutting distance 1 km. Thrust force in turning test decreases in the order of GCMP, GCD 70, GCD 50, GC 25, GCD 45 and GCD HSMo. i.e. machinability increases in this order. The superior machinability of GC 25 is caused by flake type graphite which acts as chip braker and provides lubrication during machining. Consequently, soft ferritic cast irons exhibit superior machinability compared with pearlitic cast irons.

  • PDF

Effect of Admix Ratio of Free-machining Agent 'KSX' that Contains Complex Calcium Oxide Powder on Machinability

  • Furuta, Satoshi;Masuda, Shinsuke
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.297-298
    • /
    • 2006
  • Free-machining agent 'KSX' contains complex calcium oxide is developed. The effect of admix ratio of KSX on mechanical properties and machinability with two different cutting speeds is reported. KSX displays improved machinability without deterioration of mechanical properties up to 0.3mass% addition. It was observed that KSX is effective with a small addition of 0.1mass% at slower cutting speed, and increased of admix ratio is effective at faster cutting speed.

  • PDF

Determining Machinability and Setup Orientation for Five-axis NC Machining of Free Surfaces (머신 컨피규레이션에 따른 자유곡면의 5 축 가공성과 셋업 자세)

  • Kang, Jae-Kwan;Suh, Suk-Hwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.1
    • /
    • pp.67-84
    • /
    • 1995
  • Five-axis NC machining is advanced machining technology by which highly geometrically complicated parts can be machined accurately with high machinability. In this paper, we investigate the problems of determining the machinability and part setup orientation for a given surface models. We first develop kinematic model of the five-axis machines based on the axis configuration, then develop algorithms for determining the feasibility of machining by one setup(machinability) and the part orientation for the C,A and A,B type configuration. The machinability is determined by computationally efficient procedure for finding the intersection between the feasible area on the sphere and the numerical map called binary spherical map(BSM), and the part setup is chosen such that the rotational range is minimized among the feasible configurations. The developed algorithms are tested by numerical simulations, convincing they can be readily implemented on the CAD/CAM system as an automated process planner giving the efficient machine type and setup for NC machining.

  • PDF

Machinability Evaluation of CBN Ball End Milling in Die & Mold Steels with High Hardness (고경도 금형강의 CBN 볼 엔드밀 가공에서 가공성 평가)

  • Kim, Hong-Gyoo;Sim, Jae-Hyung;Lee, Jong-Chan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.119-126
    • /
    • 2007
  • Generally, the machinability of materials that have a good mechanical properties is poor. The material having a high strength, high toughness in high temperature and wear resistance, it is difficult to remove a chip from workpiece. STD11 and NAK80 are kinds of these materials and these materials can be used in many industrial fields. But it is limited in use because of high cost and poor machinability. In this experimental study, the cutting of STD11 and NAK80 were used to decide the machinability and the tool shape of CBN ball end mill. From the results, the CBN ball end mill is verified that the estimated cutting edge shape of rake angle 30 degree has consistent effect on the tool wear and cutting force.

A Study on Machinability of Silicon Nitride Ball Sintered by Various Gas Pressure Sintering(GPS) Conditions (가스압 소결조건에 따른 질화규소볼의 가공성에 대한 연구)

  • 이수완;김성호;정용선
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.2
    • /
    • pp.115-122
    • /
    • 1998
  • The effect of sintering conditions on the sinterability for silicon nitride has been studied by many in-vestigators. However the effect of sintering conditions on the machinability which is the major barrier to the field applications of the ceramic components has not been fully studied. In this study the sintering con-ditions such as temperature gas pressure and time in silicon nitride were varied. The physical and mechan-ical properties of the gas pressure sintered (GPS) silicon nitride were measured. The optimum mi-crostructure of silicon nitride with the excellent machinability was investigated by MFG(magnetic-fluid grinding) technique. An attempt was made to figure out how the mechanical properties influence upon the machinability of silicon nitride ball.

  • PDF

Effects of the Addition of $La_2O_3$ on Mechanical Properties and Machinability of $Si_3N_4$ Ball

  • Sang Yang Lee;Sung Ho Kim;Soo Wohn Lee
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.364-369
    • /
    • 2000
  • Silicon nitride with adding La$_2$O$_3$ was sintered by gas pressure sintering (GPS) technique at $1950^{\circ}C$, in $N_2$ gas at 3 MPa, for 2h. Mechanical properties such as hardness, flexural strength, and fracture toughness were determined as a function of the GPS holding time and the contents of La$_2$O$_3$ in silicon nitride. Also machinability of silicon nitride ball with various GPS holding time and amount of La$_2$O$_3$ was evaluated by magnetic fluid grinding (MFG) method. In this study it was found that machinability was influenced significantly with La$_2$O$_3$ contents. However, the different GPS holding time did not affect the machinability very much.

  • PDF

A Study on the Improvement of Machinability of Sintered Ferrous Parts (철계 소결체의 피삭성 향상에 관한 연구)

  • 임태환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.2
    • /
    • pp.94-100
    • /
    • 2002
  • Various elements which can improve the machinability of sintered ferrous materials were added into the sintered Fe +0.7%C. From the results of the machinability felt, it was found that the sintered part containing 0.15%$SiO_2$+0.15%MgO, which was sintered followed by a steam treatment, exhibited the superior machinability.

  • PDF

Microstructure and Machinability with Alloying Elements in the 304 Stainless Steel (304 스테인레스강에서 첨가원소에 따른 미세조직 및 절삭성 연구)

  • Kang, S.S.;Kim, H.C.;Lee, J.H.;Cho, J.R.;Jung, Y.G.;Jang, C.H.;Hwang, H.S.
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.584-591
    • /
    • 2006
  • To enhance the machinability of the austenite stainless alloys, Mn and S were added to form MnS in the austenite matrix. Recently, Ca is also added to increase machinability. The alloying elements, such as C, Mn, S, Ca, and Al, are known to affect machinability, but those roles are not well understood. In this study, the ingots, controlled of alloying elements, C, Mn, S, Ca, Al, were prepared in the 304 stainless steel. The relationship between microstructure and machinability was compared to understand the role of alloying elements. It was proved that Mn and S enhanced machinability but C reduced it by analyzing cutting force on machining in the lathe. The alloying elements, Ca and Al, made a complex oxide compound of Mn-S-Ca-Al-Si-O, which results in increasing tool life. The ferrite volume fraction was changed with alloying elements and the effect of the ferrite fraction on machining was also discussed.