• Title/Summary/Keyword: mSv

Search Result 572, Processing Time 0.031 seconds

RF Power Amplifier using 0.25${\mu}{\textrm}{m}$ standard CMOS Technology (0.25${\mu}{\textrm}{m}$ 표준 CMOS 공정을 이용한 RF 전력증폭기)

  • 박수양;전동환;송한정;손상희
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.851-854
    • /
    • 1999
  • A high efficient, CMOS RF power amplifier at a 2.SV power supply for the band of 902-928MHz was designed and analyzed in 0.25${\mu}{\textrm}{m}$ standard CMOS technology. The output power of designed amplifier is being digitally controlled from a minimum of 2㎽ to a maximum of 21㎽, corresponding to a dynamic range of l0㏈ power control. The frequency response of this power amplifier is centered roughly at 915MHz. The power added efficiency of designed amplifer is almost 48% at maximum output power of 21㎽.

  • PDF

Thermal Oxidative Purification of Detonation Nanodiamond in a Gas-Solid Fluidized Bed Reactor

  • Lee, Jae Hoon;Youn, Yong Suk;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.738-751
    • /
    • 2018
  • The effect of the reaction temperature and reaction time on the thermal oxidative purification quality of detonation nanodiamond (NDsoot) was investigated in a gas-solid fluidized bed reactor of a $0.10m-ID{\times}1.0m$-high stainless steel column with zirconia beads ($d_{SV}=99.2{\mu}m$). The carbon conversion increased with increasing the reaction temperature; however, when the reaction temperature was greater than 773 K, the carbon conversion did not increase. The content of $sp^3$-hybridized carbon at the reaction temperature of 703 K barely changed when the reaction time was more than 30 minutes, but at 773 K, the content decreased as preferred. At 703 K, the purification quality increased with the increasing reaction time; however, at 773 K, the purification quality increased up to 30 minutes and then decreased rapidly.

A Study for Applying TMO Model to MicroC/OS-II (MicroC/OS-II 상의 TMO모델 적용에 관한 연구)

  • Lee, Sung-Keun;Heu, Shin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.593-596
    • /
    • 2008
  • 최근에는 임베디드 시스템의 규모가 점차 커지고, 시스템이 노드단위로 분산되어 협업을 통한 작업을 하는 경향이 많아져, 시스템 디자인에 객체지향적인 패러다임이 필요하게 되었다. TMO 모델은 90년대초반부터 U.C Irvine의 Kane.Kim 등에 의해 연구되고 있는 실시간 객체모델이다. TMO 모델은 SvM과 SpM의 두가지 메소드 타입으로 실시간 클럭에 의한 수행이나, 이벤트 발생에 의한 메소드 수행을 지원함으로써 분산 실시간 시스템의 설계를 용이하게 해준다. 본 논문에서는 적은 용량의 실시간 운영체제인 MicroC/OS-II에 TMO 모델의 적용 방안을 제안한다.

A absorbed and effective dose from the full-mouth periapical radiography using portable dental x-ray machine and panoramic radiography (ORIGINAL ARTICLE - 이동형 구내방사선촬영기로 촬영한 치근단 방사선촬영과 파노라마방사선촬영의 흡수선량과 유효선량 평가)

  • Han, Won-Jeong
    • The Journal of the Korean dental association
    • /
    • v.50 no.7
    • /
    • pp.420-430
    • /
    • 2012
  • Purpose: The purpose of this study was to measure the absorbed dose and to calculate the effective dose for full-mouth periapical radiography using the portable dental x-ray machine and panoramic radiography Material and Method: Thermoluminescent chips were placed at 25sites throughout the layers of the head and neck of a tissue-equivalent human skull phantom. The man phantom was exposed with the portable dental x-ray machine and panoramic unit. During full-mouth periapical radiography the exposure setting was 60 kVp, 2 mA and 0.15 ~ 0.25 seconds, while during panoramic radiography the selected exposure setting was 72 kVp, 8 mA and 18 seconds. Absorbed dose measurements were obtained and equivalent doses to individual organs were summed using ICRP 103 to calculate of effective dose. Result: In the full-mouth periapical radiography, the highest absorbed dose was recorded at the mandible body follow with submandibular glands and cheek. Using panoramic unit, the highest absorbed dose was parotid glands and the following was back of neck and submandibular glands. The effective dose in full-mouth periapical radiography using portable dental x-ray machine was 46 ${\mu}Sv$. In panoramic radiography, the effective dose was 38 ${\mu}pSv$. Conclusion: It was recommended to panoramic radiography for general check in the head and neck area because that the effect dose in the panoramic radiography was lower than the dose in the full-mouth periapical radiography using portable dental x-ray machine.

ICU Real-Time Sign Information Transmission System using TMO in Distributed Network Systems (분산 네트워크 시스템에서 TMO를 이용한 ICU 실시간 생체정보 전송 시스템)

  • Oh, Seung-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.230-235
    • /
    • 2009
  • The TMO may contain two types of methods, time-triggered methods(also called the spontaneous methods of SpMs) which are clearly separated from the conventional service methods (SvMs). The SpM executions are triggered upon design time whereas the SvM executions are triggered by service request message from clients. In this paper, we describes the application environment as the patient monitor telemedicine system with TMO structure. Vital sign information web viewer systems is also the standard protocol for medical image and transfer. We have to design to obtain useful vital sign information, which is generated at parsing data receiver modulor of HIS with TMO structure, that is offered by the central monitor of ICU. In order to embrace new technologies as telemedicine service, it is important to develope the standard protocol between different systems in the hospital, as well as the communication with external hospital systems.

  • PDF

Shielding 140 keV Gamma Ray Evaluation of Dose by Depth According to Thickness of Lead Shield (140 keV 감마선 차폐 시 납 차폐체 두께에 따른 깊이별 선량 평가)

  • Kim, Ji-Young;Lee, Wang-Hui;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.129-134
    • /
    • 2018
  • The present study made a phantom for gamma ray of 140 keV radiated from $^{99m}Tc$, examined shielding effect of lead by thickness of the shielding material, and measured surface dose and depth dose by body depth. The OSL Nano Dot dosimeter was inserted at 0, 3, 15, 40, 90, and 180 mm depths of the phantom, and when there was no shield, 0.2 mm lead shield, 0.5 mm lead shield, The depth dose was measured. Experimental results show that the total cumulative dose of dosimeters with depth is highest at 366.24 uSv without shield and lowest at 94.12 uSv with 0.5 mm lead shield. The shielding effect of 0.2 mm lead shielding was about 30.18% and the shielding effect of 0.5 mm lead shielding was 74.30%, when the total sum of the accumulated doses of radiation dosimeter was 100%. The phantom depth and depth dose measurements showed the highest values at 0 mm depth for all three experiments and the dose decreases as the depth increases. This study proved that the thicker a shielding material, the highest its shielding effect is against gamma ray of 140 keV. However, it was known that shielding material can't completely shield a body from gamma ray; it reached deep part of a human body. Aside from the International Commission on Radiation Units and Measurements (ICRU) recommending depth dose by 10 mm in thickness, a plan is necessary for employees working in department of nuclear medicine where they deal with gamma ray, which is highly penetrable, to measure depth dose by body depth, which can help them manage exposed dose properly.

Assessment of radiation exposure from cesium-137 contaminated roads for epidemiological studies in Seoul, Korea

  • Lee, Yun-Keun;Ju, Young-Su;Lee, Won Jin;Hwang, Seung Sik;Yim, Sang-Hyuk;Yoo, Sang-Chul;Lee, Jieon;Choi, Kyung-Hwa;Burm, Eunae;Ha, Mina
    • Environmental Analysis Health and Toxicology
    • /
    • v.30
    • /
    • pp.5.1-5.8
    • /
    • 2015
  • Objectives We aimed to assess the radiation exposure for epidemiologic investigation in residents exposed to radiation from roads that were accidentally found to be contaminated with radioactive cesium-137 ($^{137}Cs$) in Seoul. Methods Using information regarding the frequency and duration of passing via the $^{137}Cs$ contaminated roads or residing/working near the roads from the questionnaires that were obtained from 8875 residents and the measured radiation doses reported by the Nuclear Safety and Security Commission, we calculated the total cumulative dose of radiation exposure for each person. Results Sixty-three percent of the residents who responded to the questionnaire were considered as ever-exposed and 1% of them had a total cumulative dose of more than 10 mSv. The mean (minimum, maximum) duration of radiation exposure was 4.75 years (0.08, 11.98) and the geometric mean (minimum, maximum) of the total cumulative dose was 0.049 mSv (<0.001, 35.35) in the exposed. Conclusions An individual exposure assessment was performed for an epidemiological study to estimate the health risk among residents living in the vicinity of $^{137}Cs$ contaminated roads. The average exposure dose in the exposed people was less than 5% of the current guideline.

Safety Assessment on Long-term Radiological Impact of the Improved KAERI Reference Disposal System (the KRS+)

  • Ju, Heejae;Kim, In-Young;Lee, Youn-Myoung;Kim, Jung-Woo;Hwang, Yongsoo;Choi, Heui-joo;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.75-87
    • /
    • 2020
  • The Korea Atomic Energy Research Institute (KAERI) has developed geological repository systems for the disposal of high-level wastes and spent nuclear fuels (SNFs) in South Korea. The purpose of the most recently developed system, the improved KAERI Reference Disposal System Plus (KRS+), is to dispose of all SNFs in Korea with improved disposal area efficiency. In this paper, a system-level safety assessment model for the KRS+ is presented with long-term assessment results. A system-level model is used to evaluate the overall performance of the disposal system rather than simulating a single component. Because a repository site in Korea has yet to be selected, a conceptual model is used to describe the proposed disposal system. Some uncertain parameters are incorporated into the model for the future site selection process. These parameters include options for a fractured pathway in a geosphere, parameters for radionuclide migration, and repository design dimensions. Two types of SNF, PULS7 from a pressurized water reactor and Canada Deuterium Uranium from a heavy water reactor, were selected as a reference inventory considering the future cumulative stock of SNFs in Korea. The highest peak radiological dose to a representative public was estimated to be 8.19×10-4 mSv·yr-1, primarily from 129I. The proposed KRS+ design is expected to have a high safety margin that is on the order of two times lower than the dose limit criterion of 0.1 mSv·yr-1.

Thyroid Doses in Children from Radioiodine following the Accident at the Fukushima Daiichi Nuclear Power Plant

  • Kim, Eunjoo;Kurihara, Osamu
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.1
    • /
    • pp.2-10
    • /
    • 2020
  • Background: Huge amounts of radionuclides were released into the environment due to the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, which caused not only serious contamination on the ground, but also radiation exposure to the public. One problem that remains in performing the dose estimation is the difficulty of estimating the internal thyroid dose due to the intake of radioiodine (mainly, 131I) because of limitations to the human data available. Materials and Methods: The relevant papers were collected and reviewed by the authors. The results of thyroid dose estimates from different studies were tabulated for comparison. Results and Discussion: The thyroid dose estimates from the studies varied widely. The dose estimates by the United Nations Scientific Committee on the Effects of Atomic Radiation were higher than the others due to the ingestion dose being based on conservative assumptions. The dose estimates by Japanese experts were mostly below 20-30 mSv. The recent studies suggested that exposure on March 12, 2011 would be crucial for late evacuees from the areas near the FD-NPP because of the possible intake of short-lived radionuclides other than 131I. Further multilateral studies are vital to reduce uncertainties in the present dose estimations. Conclusion: The estimation of the thyroid doses to Fukushima residents still has many uncertainties. However, it is considered unlikely that the thyroid doses exceeded 50 mSv except in some extreme cases. Further multilateral studies are thus necessary to reduce the uncertainties in the present dose estimations.

EQUIVALENT DOSE FROM SECONDARY NEUTRONS AND SCATTER PHOTONS IN ADVANCE RADIATION THERAPY TECHNIQUES WITH 15 MV PHOTON BEAMS

  • Ayuthaya, Isra Israngkul Na;Suriyapee, Sivalee;Pengvanich, Phongpheath
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.3
    • /
    • pp.147-154
    • /
    • 2015
  • The scatter photons and photoneutrons from high energy photon beams (more than 10 MV) will increase the undesired dose to the patient and the staff working in linear accelerator room. This undesired dose which is found at out-of-field area can increase the probability of secondary malignancy. The purpose of this study is to determine the equivalent dose of scatter photons and neutrons generated by 3 different treatment techniques: 3D-conformal, intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). The measurement was performed using two types of the optically stimulation luminescence detectors (OSL and OSLN) in the Alderson Rando phantom that was irradiated by 3 different treatment techniques following the actual prostate cancer treatment plans. The scatter photon and neutron equivalent dose were compared among the 3 treatments techniques at the surface in the out-of-field area and the critical organs. Maximum equivalent dose of scatter photons and neutrons was found when using the IMRT technique. The scatter neutrons showed average equivalent doses of 0.26, 0.63 and $0.31mSv{\cdot}Gy^{-1}$ at abdominal surface region which was 20 cm from isocenter for 3D, IMRT and VMAT, respectively. The scattered photons equivalent doses were 6.94, 10.17 and $6.56mSv{\cdot}Gy^{-1}$ for 3D, IMRT and VMAT, respectively. For the 5 organ dose measurements, the scattered neutron and photon equivalent doses in out of field from the IMRT plan were highest. The result revealed that the scatter equivalent doses for neutron and photon were higher for IMRT. So the suitable treatment techniques should be selected to benefit the patient and the treatment room staff.