• Title/Summary/Keyword: mSv

Search Result 571, Processing Time 0.03 seconds

A Feasibility Study on the Lens of Eye Dose Assessment Using the System of Multi-Element TLD (다중소자 열형광선량계에 의한 수정체 등가선량 평가의 적정성 연구)

  • Lee, Na-Rae;Han, Seung-Jae;Lee, Byung-Il;Cho, Kun-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.2
    • /
    • pp.96-102
    • /
    • 2012
  • International Commission on Radiological Protection (ICRP) has revised its recommendations concerning the tissue reaction to ionizing radiation in accordance with consideration of the detriment arising from non-cancer effects of radiation on health based on recent epidemiological basis. Particularly, for the lens of the eye, the threshold in absorbed dose revised to be 0.5 Gy, for occupational exposure in planned exposure situation the commission recommended "An equivalent dose limit for the lens of the eye of 20 mSv in a year, averaged over defined periods of 5 years, with no single year exceeding 50 mSv." To monitor the radiation exposure of radiation worker, TLD is typically provided and the lens of eye dose can be assessed by run of dose calculation algorithm with TL element response data. This study is to assess equivalent dose of the lens of eye using the Harshaw TLD system and its two different dose calculation algorithms. The result provides the Harshaw TLD system showed the assessment of the lens of eye dose with 48.84% error range.

Investigation of organ dose difference of age phantoms for medical X-ray examinations (X선 촬영 시 연령별 장기선량 차이 연구)

  • Park, Sang-Hyun;Lee, Choon-Sik;Kim, Woo-Ran;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.1
    • /
    • pp.35-42
    • /
    • 2003
  • Methodology for calculating the organ equivalent doses and the effective doses of pediatric and adult patients undergoing medical X-ray examinations were established. The MIRD-type mathematical phantoms of 4 age groups were constructed with addition of the esophagus to the same phantoms. Two typical examination procedures, chest PA and abdomen AP, were simulated for the pediatric patients as well as the adult as illustrative examples. The results confirmed that patients pick up approximate 0.03 mSv of effective dose from a single chest PA examination, and 0.4 to 1.7 mSv from an abdomen AP examination depending on the ages. For dose calculations where irradiation is made with a limited field, the details of the position, size and shape of the organs and the organ depth from the entrance surface considerably affect the resulting doses. Therefore, it is important to optimize radiation protection by control of X-ray properties and beam examination field. The calculation result, provided in this study, can be used to implement optimization for medical radiation protection.

Radiological Impact on Decommissioning Workers of Operating Multi-unit NPP (다수호기 원전 운영에 따른 원전 해체 작업자에 대한 방사선학적 영향)

  • Lee, Eun-hee;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.107-120
    • /
    • 2019
  • The decommissioning of one nuclear power plant in a multi-unit nuclear power plant (multi-unit NPP) site may pose radiation exposure risk to decommissioning workers. Thus, it is essentially required to evaluate the exposure dose of decommissioning workers of operating multi-unit NPPs nearby. The ENDOS program is a dose evaluation code developed by the Korea Atomic Energy Research Institute (KAERI). As two sub-programs of ENDOS, ENDOS-ATM to anticipate atmospheric transport and ENDOS-G to calculate exposure dose by gaseous radioactive effluents are used in this study. As a result, the annual maximum individual dose for decommissioning workers is estimated to be $2.31{\times}10^{-3}mSv{\cdot}y^{-1}$, which is insignificant compared with the effective dose limit of $1mSv{\cdot}y^{-1}$ for the public. Although it is revealed that the exposure dose of operating multi-unit NPPs does not result in a significant impact on decommissioning workers, closer examination of the effect of additional exposure due to actual demolition work is required. The calculation method of this study is expected to be utilized in the future for planned decommissioning projects in Korea. Because domestic NPPs are located in multi-unit sites, similar situations may occur.

A Study on the Radiation Exposure Dose of Clinical Trainees in the Department of Radiology: A Case Study at C University Hospital (방사선(학)과 임상실습생의 수시출입자 피폭선량에 대한 고찰: C 대학병원 사례 연구)

  • Joo-Ah Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.2
    • /
    • pp.249-255
    • /
    • 2023
  • In this study, radiation exposure doses were measured in the course of clinical practice of radiation workers, radiological technologists in the radiation-related worker group, and preliminary-radiological technologists who were classified as frequent visitors. Radiological technologists who worked in the radiation area of C University Hospital in Incheon for a year from January 2021 and 121 students who completed clinical practice at the same medical institution from July 1 to August 31 were the subjects of the study. The nominal risk factor based on ICRP 103 was used to evaluate the probability of side effects due to the exposure dose to the lungs, which are organs at risk of damage due to radiation exposure dose. During the clinical practice period, radiology students, who were classified as frequent visitors, had a surface dose of 0.98 ± 0.14 mSv and a deep dose of 0.93 ± 0.14 mSv. In other words, 6.7 per 1,000,000 for shallow dose and 6.4 per 1,000,000 for deep dose were found to have side effects due to exposure to the lungs. This is a value in terms of exposure dose in one year. Considering that the radiation (science) education course is 3 or 4 years, systematic management and attention to prospective radiation workers who are going to clinical practice are required, and the stochastic effect of radiation In relation to this, it is considered that it will be used as basic data for radiation safety management.

Public Exposure to Natural Radiation and the Associated Increased Risk of Lung Cancer in the Betare-Oya Gold Mining Areas, Eastern Cameroon

  • Joseph Emmanuel Ndjana Nkoulou II;Louis Ngoa Engola;Guy Blanchard Dallou;Saidou;Daniel Bongue;Masahiro Hosoda;Moise Godefroy Kwato Njock;Shinji Tokonami
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.59-67
    • /
    • 2023
  • Background: This study aims to reevaluate natural radiation exposure, following up on our previous study conducted in 2019, and to assess the associated risk of lung cancer to the public residing in the gold mining areas of Betare-Oya, east Cameroon, and its vicinity. Materials and Methods: Gamma-ray spectra collected using a 7.62 cm×7.62 cm in NaI(Tl) scintillation spectrometer during a car-borne survey, in situ measurements and laboratory measurements performed in previous studies were used to determine the outdoor absorbed dose rate in air to evaluate the annual external dose inhaled by the public. For determining internal exposure, radon gas concentrations were measured and used to estimate the inhalation dose while considering the inhalation of radon and its decay products. Results and Discussion: The mean value of the laboratory-measured outdoor gamma dose rate was 47 nGy/hr, which agrees with our previous results (44 nGy/hr) recorded through direct measurements (in situ and car-borne survey). The resulting annual external dose (0.29±0.09 mSv/yr) obtained is similar to that of the previous study (0.33±0.03 mSv/yr). The total inhalation dose resulting from radon isotopes and their decay products ranged between 1.96 and 9.63 mSv/yr with an arithmetic mean of 3.95±1.65 mSv/yr. The resulting excess lung cancer risk was estimated; it ranged from 62 to 216 excess deaths per million persons per year (MPY), 81 to 243 excess deaths per MPY, or 135 excess deaths per MPY, based on whether risk factors reported by the U.S. Environmental Protection Agency, United Nations Scientific Committee on the effects of Atomic Radiation, or International Commission on Radiological Protection were used, respectively. These values are more than double the world average values reported by the same agencies. Conclusion: There is an elevated level of risk of lung cancer from indoor radon in locations close to the Betare-Oya gold mining region in east Cameroon. Therefore, educating the public on the harmful effects of radon exposure and considering some remedial actions for protection against radon and its progenies is necessary.

Space Radiation Measurement on the Polar Route onboard the Korean Commercial Flights

  • Hwang, Jung-A;Lee, Jae-Jin;Cho, Kyung-Suk;Choi, Ho-Sung;Rho, Su-Ryun;Cho, Il-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.1
    • /
    • pp.43-54
    • /
    • 2010
  • This study was performed by the policy research project of Ministry of Land, Transport and Maritime Affairs, which title is "Developing safety standards and management of space radiation on the polar route". In this research, total six experiments were performed using Korean commercial flights (B747). Three of those are on the polar route and the other three are on the north pacific route. Space radiation exposure measured on the polar route is the average 84.7 uSv. The simulation result using CARI-6M program gives 84.9 uSv, which is very similar to measured value. For the departure flight using the north pacific route, the measured space radiation is the average 74.4 uSv. It seems that is not so different to use the polar route or not for the return flight because the higher latitude effect causing the increase of space radiation is compensated by the shortened flight time effect causing decreasing space radiation exposure.

Assessment of Radiation Dose from Radioactive Wedge Filters during High-Energy X-Ray Therapy

  • Back, Geum-mun;Park, Sung Ho;Kim, Tae-Hyung
    • Progress in Medical Physics
    • /
    • v.28 no.2
    • /
    • pp.45-48
    • /
    • 2017
  • This paper evaluated the amount of radiation generated by wedge filters during radiation therapy using a high-energy linear accelerator, and the dose to the worker during wedge replacement. After 10-MV photon beam was irradiated with wedge filter, the wedge was removed from the linear accelerator, and the dose rate and energy spectrum were measured. The initial measurement was approximately 1 uSv/h, and the radiation level was reduced to 0.3 uSv/h after 6 min. The effective half-life derived from the dose rate measurement was approximately 3.5 min, and the influence of AI-28 was about 53%. From the energy spectrum measurements, a peak of 1,799 keV was measured for AI-28, while the peak for Co-58 was not measured in the control room. The peaks for Au-106 and Cd-105 were found only measurement was done without wedge removement from the linear accelerator. The additional doses received by the radiation worker during wedge replacement were estimated to be 0.08-0.4 mSv per year.

Uniaxial Magnetic Anistotropy of a NiO-Spin Valve Device

  • Lee, Won-Hyung;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of Magnetics
    • /
    • v.14 no.1
    • /
    • pp.18-22
    • /
    • 2009
  • The shape anisotropy effect of a giant magnetoresistance-spin valves (GMR-SV) device with a glass/NiO/NiFe/CoFe/Cu/CoFe/NiFe layered structure for use in the detection of magnetic property of molecules within a cell was investigated. The patterned device was given uniaxial anisotropy during the sputtering deposition and vacuum post-annealing, which was performed at $200^{\circ}C$ under a 300 Oe magnetic field. The pattern size of the device, which was prepared through the photolithography process, was $2{\times}15\;{\mu}m^2$. The experimental results confirmed that the best design for a GMR-SV device to be used as a biosensor is to have both the axis sensing current and the easy axis of the pinned NiO/NiFe/CoFe triple layer oriented in the direction of the device's width, while the easy axis of the free CoFe/NiFe bilayer should be pointed along the long axis of the device.

Reflection of electro-magneto-thermoelastic plane waves in a rotating medium in context of three theories with two-temperature

  • Abo-Dahab, S.M.;Othman, Mohamed I.A.;Alsebaey, Ohoud N.S.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • In this paper, we established the generalized thermoelasticity phenomenon in an isotropic elastic medium considering the electromagnetic field, rotation and two-temperature. Three theories of generalized thermoelasticity have been applied: Lord-Shulman (one relaxation time), Green-Lindsay (two relaxation times), as well as the coupled theory. We discussed some particular cases in the context of the wave propagation phenomenon in thermoelasticity. From solving the fundamental equations, we arrived that there are three waves: P-, T- and SV-waves that we calculated their velocities. The boundary conditions for mechanical stress and Maxwell's stress and thermal insulated or isothermal have been applied to determine the amplitudes ratios (reflection coefficients) for P-, T - and SV waves. Some utilitarian aspects are obtained from the reflection coefficients, presented graphically, and the new conclusions have been presented. Comparisons are made for the results predicted by different theories (CT, LS, GL) in the absence and presence of the electro-magnetic field, rotation, as well as two-temperature on the reflection of generalized thermoelastic waves. The results obtained concluded that the external parameters as the angle of incidence, electromagnetic field, rotation as well as the theories parameters have strong effect on the phenomenon.

A Study of the Presence of Carbonic Acid and Other Potentially Hazardous Substances in Cheongsong Mineral Water (청송약수의 탄산과 유해 가능성 물질 존재에 관한 연구)

  • Lee, Sung-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.1
    • /
    • pp.132-136
    • /
    • 2021
  • The purpose of this study is to measure the levels of eluted and dissolved CO2, and CO, volatile organic substances and radiation composition of Cheongsong mineral water which were collected from November 2019 to July 2020 during the autumn, spring, and summer seasons at collection points located in the upper, middle and lower spring waters. Data of the upper, middle and lower spring waters include the following: the amount of eluted water (average value±standard deviation, mL/min) was 30.07±0.52, 15.03±0.16, 23.73±0.42, and the amount of CO2 gas was 1,000 ppm or more. In addition, there was no detection of CO or total volatile organic substances (TVOC) and the radiation dose was 0.08 to 0.13. μSv/h. A blank test value of 0.08 to 0.10 μSv/h, when compared with the median value, showed a high value of 0.02 μSv/h, and the uranium test results provided by the Cheongsong-gun Office were 0.0118 mg/L (date 2019.06.18) and 0.0091 mg/L (date 2020.06.04.) respectively, which was less than the permission limit of 0.03 mg/L. However, it is believed that further research using more precise devices is needed in order to guarantee the safety and health of the water.