• Title/Summary/Keyword: mSv

Search Result 561, Processing Time 0.021 seconds

Measurement of the Space Radiation Dose for the Flight Aircrew at High-Altitude

  • Lee, Jaewon;Park, Inchun;Kim, Junsik;Lee, Jaejin;Hwang, Junga;Kim, Young-Chul
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • This paper describes an experimental approach to evaluate the effective doses of space radiations at high-altitude by combining the measured data from the Liulin-6K spectrometer loaded onto the air-borne RC-800 cockpit and the calculated data from CARI-6M code developed by FAA. In this paper, 15 exposed dose experiments for the flight missions at a high-altitude above 10 km and 3 experiments at a normal altitude below 4 km were executed over the Korean Peninsula in 2012. The results from the high-altitude flight measurements show a dramatic change in the exposed doses as the altitude increases. The effective dose levels (an average of $15.27{\mu}Sv$) of aircrew at the high-altitude are an order of magnitude larger than those (an average of $0.30{\mu}Sv$) of the normal altitude flight. The comparison was made between the measure dose levels and the calculated dose levels and those were similar each other. It indicates that the annual dose levels of the aircrew boarding RC-800 could be above 1 mSv. These results suggest that a proper procedure to manage the exposed dose of aircrew is required for ROK Air Force.

A TMO Supporting Library and a BCC Scheduler for the Microscale Real-time OS, TMO-eCos) (초경량 실시간 운영체제 TMO-eCos를 위한 TMO 지원 라이브러리 및 BCC 스케줄러)

  • Ju, Hyun-Tae;Kim, Jung-Guk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.7
    • /
    • pp.505-509
    • /
    • 2009
  • It is the most important object of real-time computing to make real-time tasks keep their given time conditions. In this paper, we implemented BCC(Basic Concurrency Constraint) scheduler which is provided as an essential element of TMO(Time-triggered Message-triggered Object) model, and TMO Supporting Library that supports object-oriented design for TMO. BCC scheduler is a means to design timeliness-guaranteed computing, and it predicts the start of SpMs first, and then it makes the execution of SvMs deferred when it is predicted that any SpM begins to run currently. In this way, BCC is able to prevent collisions between SpM and SvM, and it gives higher priority to SpMs than SvMs.

A Study on the Scattered Dose in Portable Chest Radiography (portable 흉부촬영시 공간산란선량에 관한 연구)

  • Ahn, Bong-Seon;Lee, Hwan-Hyung
    • Journal of radiological science and technology
    • /
    • v.23 no.2
    • /
    • pp.63-67
    • /
    • 2000
  • The purpose of this study is to survey the present status of portable radiography and the result of free space scattered dose rate when taking a radiography at the general hospital or the university hospital in Taejon city. The results were as follows; 1. The number of cases using portable radiography for three years increased to averages 16.2%, 7.7% per year from January 1st in 1996 to December 31st in 1998. 2. The average of distance of adjacent patients was 219.1 cm at the ward. 3. For portable chest radiography, the free space scattered dose rate was 10.5 mSv/hr at 50 cm distance, 1.8 mSv/hr at 100 cm distance, and 0.2 mSv/hr at 200 cm distance. Therefore, in case of portable chest radiography at the ward, the average of distance of adjacent patients is 219.1 cm, so it does not have influence on the adjacent patients. But during the portable radiography, a guardian who is close to the patient, doctor, nurse and radiologic technologists has to set up the shield to prevent from the unnecessary radiation or the distance should be as great as possible from the mobile X-ray equipment.

  • PDF

STUDY ON ENTRANCE SKIN DOSE AT PANORAMIC RADIOGRAPHY IN INCHEON, KOREA

  • Choi, Jung-Hyun;Kim, Sung-Chul;Han, Dong Kyoon
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.4
    • /
    • pp.182-186
    • /
    • 2014
  • Recently, the use of panoramic radiography has shown a constant increase, and significant research is underway. However, radiation exposure attracts less attention in dental radiography than in other types of radiography. We used an OSLD for measurement of the entrance skin dose in eyeballs and the thyroid region, both of which are not covered by examinations but are included in radiographical regions and are sensitive to radiation, as well as orally in Incheon and reported the results. The entrance skin dose was 0.0282 mSv on average for the oral region, and 0.0259 mSv on average for the eyeball, and 0.0261mSv on average, for thyroid gland. While there is no proper shielding method for the eyeball, a thyroid protector is not used by most hospitals and most hospitals are equipped with an apron and a thyroid protector separately; thus, it is necessary to use an integration of an apron and a thyroid protector and medical device manufacturers need to develop a method for controlling the length of the slit in the slit-type area of radiation occurrence in order to reduce unnecessary exposure.

A preliminary evaluation of the implementation of a radiation protection program for the lens of the eye in Korean nuclear power plants

  • Kong, Tae Young;Kim, Si Young;Cho, Moonhyung;Jung, Yoonhee;Son, Jung Kwon;Jang, Han;Kim, Hee Geun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3035-3043
    • /
    • 2021
  • Epidemiological research has revealed that radiation exposure can cause cataracts. The Korean nuclear regulatory body has proposed the reduction of the occupational dose limit for the lens of the eye from 150 mSv/y to 100 mSv/5y, with an additional limitation of not exceeding 50 mSv/y for a specific year, taking into account the recommendations of the International Commission on Radiological Protection, and the International Atomic Energy Agency. This means that radiation workers should receive the same level of radiation safety for the lens of the eye as for whole-body protection. Korean nuclear power plants (NPPs) are conducting research to establish the radiation protection program for the lens of the eye. In terms of the preliminary results of the implementation of the radiation protection program for the lens of the eye dedicated to Korean NPPs, this review article summarizes the current state of understanding of the regulations, technical guidance, eye lens dosimeters, and radiation field conditions resulting in lens dose.

Derivation of a new dose constraint applicable to radioactive discharges from Korean nuclear power plants through retrospective dose assessment

  • Kim, Soyun;Cheong, Jae Hak
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3660-3671
    • /
    • 2022
  • A new methodology to derive a dose constraint for radioactive effluent from a unit of nuclear power plant (NPP) through retrospective assessment was developed to reflect operational flexibility in line with international standards. The new dose constraint can retain the safety margin between the offsite dose and the past dose constraints. As case studies, the new approach was applied to 24 Korean NPPs to address the limitations of the existing seven dose constraints that do not fully comply with current international radiation protection standards. Therefore, an effective dose constraint for Korean NPPs was proposed as no less than 0.15 mSv/y, which is comparable to the international practices and previous studies (0.05-0.3 mSv/y). Although the lower bound of the equivalent dose constraint was calculated as 0.17 mSv/y, it is not proposed in this study since the compliance with the derived effective dose constraint can prevent accompanied equivalent doses to any organs from exceeding equivalent dose limits. The new framework and the case studies are expected to contribute toward and support the revision of existing dose constraints for radioactive effluent from NPPs, ensuring better compliance with the current international safety standards as well as reflect the operational flexibility in practice.

A new proposal for controlled recycling of decommissioning concrete waste as part of engineered barriers of a radioactive waste repository and related comprehensive safety assessment

  • In Gyu Chang;Jae Hak Cheong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.530-545
    • /
    • 2023
  • As an alternative to conventional management options for a lot of concrete waste from decommissioning of nuclear power plants, a set of scenarios for controlled recycling of decommissioning concrete waste as engineered barriers of a radioactive waste repository was proposed, and a comprehensive safety assessment model and framework covering both pre-and post-closure phases was newly developed. The new methodology was applied to a reference vault-type repository, and the ratios of derived concentration limits to unconditional clearance levels of eighteen radionuclides for controlled recycling were provided for three sets of dose criteria (0.01, 1, and 20 mSv/y for the pre-closure and 0.01 mSv/y for the post-closure phases). It turns out that decommissioning concrete waste whose concentration is much higher than the unconditional clearance level can be recycled even when the dose criterion 0.01 mSv/y is applied. Moreover, a case study on ABWR bio-shield shows that the fraction of recyclable concrete waste increases significantly by increasing the dose criterion for the radiation worker in the pre-closure phase or the duration of storage prior to recycling. The results of this study are expected to contribute to demonstrating the feasibility of controlled recycling of a lot of decommissioning concrete waste within nuclear sectors.

Assessment of occupational radiation exposure of NORM scales residues from oil and gas production

  • EL Hadji Mamadou Fall;Abderrazak Nechaf;Modou Niang;Nadia Rabia;Fatou Ndoye;Ndeye Arame Boye Faye
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1757-1762
    • /
    • 2023
  • Radiological hazards from external exposure of naturally occurring radioactive materials (NORM) scales residues, generated during the extraction process of oil and gas production in southern Algeria, are evaluated. The activity concentrations of 226Ra, 232Th, and 40K were measured using high-purity gamma-ray spectrometry (GeHP). Mean activity concentration of 226Ra, 232Th and 40K, found in scale samples are 4082 ± 41, 1060 ± 38 and 568 ± 36 Bq kg-1, respectively. Radiological hazard parameters, such as radium equivalent (Raeq), external and internal hazard indices (Hex, Hin), and gamma index (Iγ) are also evaluated. All hazard parameter values were greater than the permissible and recommended limits and the average annual effective dose value exceeded the dose constraint (0.3 mSv y-1). However, for occasionally exposed workers, the dose rate of 0.65 ± 0.02 mSv y-1 is lower than recommended limit of 1 mSv y-1 for public.

DSC Analysis on Water State of Salvia Hydrogels

  • Yudianti, Rike;Karina, Myrtha;Sakamoto, Masahiro;Azuma, Jun-Ichi
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.1015-1020
    • /
    • 2009
  • The role of the water structure present in hydrogels from nutlets of three species of salvias, S. miltiorrhiza (SM), S. sclarea (SS) and S. viridis (SV), was analyzed by differential scanning calorimetry (DSC). The sharp endothermic peaks that appeared at $5.9^{\circ}C$ (SM), $2.8^{\circ}C$ DC (SS) and $1.8^{\circ}C$ (SV) in each 1.0% hydrogel of 10.4-15.8% were not affected by addition of 0.1 M urea and alkali-metal salts. The order-disorder portions in the network were slightly affected by the distribution of freezable and non-freezable water in the hydrogel networks. The SV hydrogel was further used to investigate the effects of additives (0.1-8.0 M urea and 0.1-5.0 M NaCl) on its melting behavior. At 0.5-4.0 M urea and 1.0-3.0 M NaCl, two endothermic peaks appeared, corresponding to unbound (high temperature) and bound (low temperature) water in the gel networks, and eventually merged into one endothermic peak at 5.0-8.0 M urea and 4.0-4.5 M NaCl. After this merger, the endothermic peak shifted to 3.7, 4.0 and $5.6^{\circ}C$ at 5.0, 6.0 and 8.0 M urea, respectively. In the case of NaCl, a combination of peaks that occurred at 4.0-4.5 M were accompanied by a shift to lower temperature (-14.4 and $15.3^{\circ}C$) and the endothermic peak finally disappeared at 5.0 M NaCl due to the strong binding of water in the gel networks.

Radiological Risk Assessment for $^{99m}Tc$ Generator using Uncertainty Analysis (불확실성 분석을 이용한 $^{99m}Tc$ 발생기 사용의 방사선위험도 평가)

  • Jang, H.K.;Kim, J.Y.;Lee, J.K.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.129-139
    • /
    • 2004
  • Recently, much attentions are paid to the risk associated with increased uses of medium size radiation sources in medical and industrial fields. In this study, radiation risks to the worker and to the general public due to $^{99m}Tc$ generator were assessed for both normal and accident conditions. Based on the event tree technique, exposure scenarios for various situations were derived. Uncertainty analysis based on the Monte-Carlo technique was applied to the risk assessment for workers and members of the public in the vicinity of the work place. In addition, sensitivity analysis was performed on each of the five independent input parameters to identify importance of the parameters with respect to the resulting risk. Because the frequencies of normal tasks are fat higher than those of accidents, the total risk associated with normal tasks were higher than the accident risk. The annual dose due to normal tasks were $0.6mSv\;y^{-1}$ for workers and $0.014mSv\;y^{-1}$ for public, while in accident conditions $3.96mSv\;y^{-1}\;and\;0.0016mSv\;y^{-1}$, respectively. Uncertainty range of accident risk was higher by 10 times than that of normal risk. Sensitivity analysis revealed that source strength, working distance and working time were crucial factors affecting risk. This risk analysis methodology and its results will contribute to establishment of risk-informed regulation for medium and large radioactive sources.