• 제목/요약/키워드: mRNA vaccines

검색결과 39건 처리시간 0.025초

Cynomolgus Macaque Model for COVID-19 Delta Variant

  • Seung Ho Baek;Hanseul Oh;Bon-Sang Koo;Green Kim;Eun-Ha Hwang;Hoyin Jung;You Jung An;Jae-Hak Park;Jung Joo Hong
    • IMMUNE NETWORK
    • /
    • 제22권6호
    • /
    • pp.48.1-48.13
    • /
    • 2022
  • With the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, which are randomly mutated, the dominant strains in regions are changing globally. The development of preclinical animal models is imperative to validate vaccines and therapeutics against SARS-CoV-2 variants. The objective of this study was to develop a non-human primate (NHP) model for SARS-CoV-2 Delta variant infection. Cynomolgus macaques infected with Delta variants showed infectious viruses and viral RNA in the upper (nasal and throat) and lower respiratory (lung) tracts during the acute phase of infection. After 3 days of infection, lesions consistent with diffuse alveolar damage were observed in the lungs. For cellular immune responses, all macaques displayed transient lymphopenia and neutrophilia in the early stages of infection. SARS-CoV-2 Delta variant spike protein-specific IgM, IgG, and IgA levels were significantly increased in the plasma of these animals 14 days after infection. This new NHP Delta variant infection model can be used for comparative analysis of the difference in severity between SARS-CoV-2 variants of concern and may be useful in the efficacy evaluation of vaccines and universal therapeutic drugs for mutations.

Acute abdomen following COVID-19 vaccination: a systematic review

  • Nelson Luis Cahuapaza-Gutierrez;Renzo Pajuelo-Vasquez;Cristina Quiroz-Narvaez;Flavia Rioja-Torres;Maria Quispe-Andahua;Fernando M. Runzer-Colmenares
    • Clinical and Experimental Vaccine Research
    • /
    • 제13권1호
    • /
    • pp.42-53
    • /
    • 2024
  • Purpose: Conduct a systematic review of case reports and case series regarding the development of acute abdomen following coronavirus disease 2019 (COVID-19) vaccination, to describe the possible association and the clinical and demographic characteristics in detail. Materials and Methods: This study included case report studies and case series that focused on the development of acute abdomen following COVID-19 vaccination. Systematic review studies, literature, letters to the editor, brief comments, and so forth were excluded. PubMed, Scopus, EMBASE, and Web of Science databases were searched until June 15, 2023. The Joanna Briggs Institute tool was used to assess the risk of bias and the quality of the study. Descriptive data were presented as frequency, median, mean, and standard deviation. Results: Seventeen clinical case studies were identified, evaluating 17 patients with acute abdomen associated with COVID-19 vaccination, which included acute appendicitis (n=3), acute pancreatitis (n=9), diverticulitis (n=1), cholecystitis (n=2), and colitis (n=2). The COVID-19 vaccine most commonly linked to acute abdomen was Pfizer-BioNTech (messenger RNA), accounting for 64.71% of cases. Acute abdomen predominantly occurred after the first vaccine dose (52.94%). All patients responded objectively to medical (88.34%) and surgical (11.76%) treatment and were discharged within a few weeks. No cases of death were reported. Conclusion: Acute abdomen is a rare complication of great interest in the medical and surgical practice of COVID-19 vaccination. Our study is based on a small sample of patients; therefore, it is recommended to conduct future observational studies to fully elucidate the underlying mechanisms of this association.

Antibody response to COVID-19 vaccination in patients on chronic hemodialysis

  • Heejung Choi;Sungdam Han;Ji Su Kim;Bumhee Park;Min-Jeong Lee;Gyu-Tae Shin;Heungsoo Kim;Kyongmin Kim;A-Young Park;Ho-Joon Shin;Inwhee Park
    • Clinical and Experimental Vaccine Research
    • /
    • 제12권3호
    • /
    • pp.249-259
    • /
    • 2023
  • Purpose: Since patients on hemodialysis (HD) are known to be vulnerable to coronavirus disease 2019 (COVID-19), many studies were conducted regarding the effectiveness of the COVID-19 vaccine in HD patients in Western countries. Here, we assessed antibody response of HD patients for 6 months post-vaccination to identify the duration and effectiveness of the COVID-19 vaccine in the Asian population. Materials and Methods: We compared antibody response of the COVID-19 vaccine in HD patients with healthy volunteers. Patient and control groups had two doses of ChAdOx1 nCoV-19 and mRNA-1273, respectively. Immunoglobulin G (IgG) was measured before vaccination, 2 weeks after the first dose, 2 and 4 weeks, 3 and 6 months after the second dose. Neutralizing antibody was measured before vaccination and at 2 weeks, 3 and 6 months after second dose. Since the third dose was started in the middle of the study, we analyzed the effect of the third dose as well. Results: Although antibody production was weaker than the control group (n=22), the patient group (n=39) showed an increase in IgG and neutralizing antibody after two doses. And, 21/39 patients and 14/22 participants had a third dose (BNT162b2 or mRNA-1273 in the patient group, mRNA-1273 in the control group), and it did not affect antibody response in both group. Trend analysis showed IgG and neutralizing antibody did not decrease over time. Age, sex, and HD vintage did not affect antibody production in HD patients. Patients with higher body mass index displayed better seroresponse, while those on immunosuppressants showed poor seroresponse. Conclusion: Two doses of vaccination led to significant antibody response in HD patients, and the antibody did not wane until 6 months.

Multifaceted Usage of HPV Related Tests and Products in the Management of Cervical Cancer - a Review

  • Nalliah, Sivalingam;Karikalan, Barani;Kademane, Kumaraswamy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2145-2150
    • /
    • 2015
  • HPV viruses are integral to the development of cervical cancer. The pathogenesis has been extensively studied. To date, numerous HPV tests and products have been developed and successfully utilized in diagnosis, treatment and prevention of cervical cancer. The HPV DNA test, when combined with other routine cervical cancer screening and diagnostic tests namely exfoliative cytology, visual inspection with acetic acid (VIA) and colposcopy has increased the detection rate of cervical cancer. HPV DNA products could also be measured in other body fluids like urine, lymph node tissue, and serum. HPV association could also be quantified by measuring other parameters like HPV mRNA, viral load, viral integration and methylation status. Vaccination against HPV has been found to decrease the incidence of cervical cancer. Further, therapeutic vaccines for cervical cancer against HPV continue to evolve. All these findings pertaining to HPV could possibly decrease the incidence of cervical cancer in the near future. This review aims to give an overview of the HPV tests and products in use and those under trial currently.

국내 5-11세 소아의 코로나19 백신 접종에 대한 델파이 연구 (Delphi Survey for COVID-19 Vaccination in Korean Children Between 5 and 11 Years Old)

  • 최영준;이영화;최재홍
    • Pediatric Infection and Vaccine
    • /
    • 제29권1호
    • /
    • pp.37-45
    • /
    • 2022
  • 본 델파이 연구에서는 5-11세 소아청소년의 코로나19 백신 접종과 관련하여 소아청소년 감염 분과 전문의와 코로나19 백신 전문가들을 대상으로 온라인 설문 조사를 시행하였다. 총 20문항에 대해 두 라운드 동안 각각 46명, 38명이 설문에 응답하였다. 패널들은 5-11세 소아청소년들이 코로나19에 쉽게 감염되지만 중증 진행의 위험도는 여전히 낮은 것으로 판단하였고, 만성 질환을 가진 소아는 중증 진행 위험도가 약간 있는 것으로 평가하였다. 코로나19 백신은 5-11세 소아에게 대체로 위험하지 않다고 응답하였고, 백신 접종의 기대 이익과 잠재적인 위해에 대한 비교는 대체적으로 중립적인 견해를 보였다. 또한 현재 소아에게 유일하게 허가된 mRNA 백신 플랫폼은 지속 가능하겠지만 소아에게는 재조합 단백질 플랫폼 백신이 추후 가장 적절할 것으로 평가되었다. 최종적으로 5-11세 소아에게 코로나19 예방 접종 권장에 대해서는 중립적인 입장을 보였다. 이에 모든 소아청소년들에게 일괄적인 접종 보다는 개별화된 선별 접종이 더 바람직할 것으로 보이며, 소아의 코로나19 백신 접종에 대한 과학적 근거 마련을 위한 지속적인 모니터링이 필요할 것으로 보인다.

Low Neutralizing Activities to the Omicron Subvariants BN.1 and XBB.1.5 of Sera From the Individuals Vaccinated With a BA.4/5-Containing Bivalent mRNA Vaccine

  • Eliel Nham;Jineui Kim;Jungmin Lee;Heedo Park;Jeonghun Kim;Sohyun Lee;Jaeuk Choi;Kyung Taek Kim;Jin Gu Yoon;Soon Young Hwang;Joon Young Song;Hee Jin Cheong;Woo Joo Kim;Man-Seong Park;Ji Yun Noh
    • IMMUNE NETWORK
    • /
    • 제23권6호
    • /
    • pp.43.1-43.10
    • /
    • 2023
  • The continuous emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants has provided insights for updating current coronavirus disease 2019 (COVID-19) vaccines. We examined the neutralizing activity of Abs induced by a BA.4/5-containing bivalent mRNA vaccine against Omicron subvariants BN.1 and XBB.1.5. We recruited 40 individuals who had received a monovalent COVID-19 booster dose after a primary series of COVID-19 vaccinations and will be vaccinated with a BA.4/5-containing bivalent vaccine. Sera were collected before vaccination, one month after, and three months after a bivalent booster. Neutralizing Ab (nAb) titers were measured against ancestral SARS-CoV-2 and Omicron subvariants BA.5, BN.1, and XBB.1.5. BA.4/5-containing bivalent vaccination significantly boosted nAb levels against both ancestral SARS-CoV-2 and Omicron subvariants. Participants with a history of SARS-CoV-2 infection had higher nAb titers against all examined strains than the infection-naïve group. NAb titers against BN.1 and XBB.1.5 were lower than those against the ancestral SARS-CoV-2 and BA.5 strains. These results suggest that COVID-19 vaccinations specifically targeting emerging Omicron subvariants, such as XBB.1.5, may be required to ensure better protection against SARS-CoV-2 infection, especially in high-risk groups.

Expression of the S glycoprotein of transmissible gastroenteritis virus (TGEV) in transgenic potato and its immunogenicity in mice

  • Ahn, Dong-Joo;Youm, Jung Won;Kim, Suk Weon;Yoon, Won Kee;Kim, Hyoung Chin;Hur, Tai-Young;Joung, Young Hee;Jeon, Jae-Heung;Kim, Hyun Soon
    • 대한수의학회지
    • /
    • 제53권4호
    • /
    • pp.217-224
    • /
    • 2013
  • Transgenic plants have been tested as an alternative host for the production and delivery of experimental oral vaccines. Here, we developed transgenic potatoes that express the major antigenic sites A and D of the glycoprotein S from transmissible gastroenteritis coronavirus (TGEV-$S_{0.7}$) under three expression vector systems. The DNA integration and mRNA expression level of the TGEV-$S_{0.7}$ gene were confirmed in transgenic plants by PCR and northern blot analysis. Antigen protein expression in transgenic potato was determined by western blot analysis. Enzyme-linked immunosorbent assay results revealed that based on a dilution series of Escherichia coli-derived antigen, the transgenic line P-2 had TGEV-$S_{0.7}$ protein at levels that were 0.015% of total soluble proteins. We then examined the immunogenicity of potato-derived TGEV-$S_{0.7}$ antigen in mice. Compared with the wild-type potato treated group and synthetic antigen treated group, mice treated with the potato-derived antigen showed significantly higher levels of immunoglobulin (Ig) G and IgA responses.

형질전환 식물체에서의 복합 단일 항체 단백질 생산 (Multiple Monoclonal Antibodies Produced in a Single Transgenic Plant)

  • 안미현;오은이;송미라;;김현순;정혁;고기성
    • 생명과학회지
    • /
    • 제19권1호
    • /
    • pp.123-128
    • /
    • 2009
  • 식물 생명공학 기술을 이용해 인간에게 유용한 치료단백질 및 백신을 생산하는 것은 최근에 각광받고 있는 연구 분야이다. 식물을 이용한 유용 단백질 생산은 다른 시스템에 비하여 경제적일 뿐만 아니라 병원성 인자에 대한 안전성이 있어서 유용하다고 할 수 있다. 암세포 표면에 특이적으로 발현하고 있는 분자 와 당 구조를 각각 인지할 수 있는 두 종류의 항체를 동시에 투여하는 면역 치료는 질병의 치료를 유도하는 데 있어서 효과적일 수 있다. 본 연구는 기존에 본 연구팀에서 확보하고 있었던 두 종류의 항체 단백질(mAb CO17-1A, mAb BR55) 생산 형질전환 식물체를 이용하여 상호교배를 통하여 한 식물에서 두 종류의 항체 단백질을 모두 생산하는 식물 발현 시스템 구축에 관한 연구이다. 각기 다른 유전자를 갖고 있는 식물체로부터 수분을 유도하여 씨앗을 얻고 이 씨앗을 배양하여 완벽한 식품 개체로 성장시켰으며, 그 식물체로부터 DNA, RNA, 단백질을 분리하여 형질전환 유전자를 포함하고 있는지 여부를 확인하였다. 그 결과, 개체에 차이는 있지만, 한 식물에서 두 항체 유전자를 갖고 있음을 확인할 수 있었고, 이 유전자는 식물체 내에서 안정적으로 transcription 되었음을 확인하였다. 또한, 두 종류의 항체를 동시 생산하는 식물체에서 분리한 단백질은 한 종류의 항체 단백질만 생산하는 식물체에 비하여 수용성 단백질 단위당 항체 발현률이 높게 나타나는 것을 확인하였다. 따라서 본 연구를 통하여 식물을 이 용한 유용 단백질 생산 효율을 높일 수 있는 시스템을 확립하였으며 앞으로 추가적으로 생산한 항체의 생물학적 활성 및 항암 효능, 당 구조 분석 등에 대한 연구용 수행한다면, 식물 생명공학적 방법을 통한 항체 생산에 대한 새로운 가능성을 제시할 수 있을 것으로 기대된다.

SARS-CoV-2 mRNA Vaccine Elicits Sustained T Cell Responses Against the Omicron Variant in Adolescents

  • Sujin Choi;Sang-Hoon Kim;Mi Seon Han;Yoonsun Yoon;Yun-Kyung Kim;Hye-Kyung Cho;Ki Wook Yun;Seung Ha Song;Bin Ahn;Ye Kyung Kim;Sung Hwan Choi;Young June Choe;Heeji Lim;Eun Bee Choi;Kwangwook Kim;Seokhwan Hyeon;Hye Jung Lim;Byung-chul Kim;Yoo-kyoung Lee;Eun Hwa Choi;Eui-Cheol Shin;Hyunju Lee
    • IMMUNE NETWORK
    • /
    • 제23권4호
    • /
    • pp.33.1-33.13
    • /
    • 2023
  • Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been acknowledged as an effective mean of preventing infection and hospitalization. However, the emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) has led to substantial increase in infections among children and adolescents. Vaccine-induced immunity and longevity have not been well defined in this population. Therefore, we aimed to analyze humoral and cellular immune responses against ancestral and SARS-CoV-2 variants after two shots of the BNT162b2 vaccine in healthy adolescents. Although vaccination induced a robust increase of spike-specific binding Abs and neutralizing Abs against the ancestral and SARS-CoV-2 variants, the neutralizing activity against the Omicron variant was significantly low. On the contrary, vaccine-induced memory CD4+ T cells exhibited substantial responses against both ancestral and Omicron spike proteins. Notably, CD4+ T cell responses against both ancestral and Omicron strains were preserved at 3 months after two shots of the BNT162b2 vaccine without waning. Polyfunctionality of vaccine-induced memory T cells was also preserved in response to Omicron spike protein. The present findings characterize the protective immunity of vaccination for adolescents in the era of continuous emergence of variants/subvariants.