• Title/Summary/Keyword: mRNA transcript

Search Result 197, Processing Time 0.022 seconds

Silence of LncRNA GAS5 Protects Cardiomyocytes H9c2 against Hypoxic Injury via Sponging miR-142-5p

  • Du, Jian;Yang, Si-Tong;Liu, Jia;Zhang, Ke-Xin;Leng, Ji-Yan
    • Molecules and Cells
    • /
    • v.42 no.5
    • /
    • pp.397-405
    • /
    • 2019
  • The regulatory role of long noncoding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) in both cancerous and noncancerous cells have been widely reported. This study aimed to evaluate the role of lncRNA GAS5 in heart failure caused by myocardial infarction. We reported that silence of lncRNA GAS5 attenuated hypoxia-triggered cell death, as cell viability was increased and apoptosis rate was decreased. This phenomenon was coupled with the down-regulated expression of p53, Bax and cleaved caspase-3, as well as the up-regulated expression of CyclinD1, CDK4 and Bcl-2. At the meantime, the expression of four heart failure-related miR-NAs was altered when lncRNA GAS5 was silenced (miR-21 and miR-142-5p were up-regulated; miR-30b and miR-93 were down-regulated). RNA immunoprecipitation assay results showed that lncRNA GAS5 worked as a molecular sponge for miR-142-5p. More interestingly, the protective actions of lncRNA GAS5 silence on hypoxia-stimulated cells were attenuated by miR-142-5p suppression. Besides, TP53INP1 was a target gene for miR-142-5p. Silence of lncRNA GAS5 promoted the activation of PI3K/AKT and MEK/ERK signaling pathways in a miR-142-5p-dependent manner. Collectively, this study demonstrated that silence of lncRNA GAS5 protected H9c2 cells against hypoxia-induced injury possibly via sponging miR-142-5p, functionally releasing TP53INP1 mRNA transcripts that are normally targeted by miR-142-5p.

Effect of DPBll Gene for the Transcriptional Induction by DNA Damage During Cell Cycle in Saccharomyces cerevisiae (출아효모의 세포주기동안 DNA 상해에 의한 발현 유도에 미치는 DPB11 유전자의 영향)

  • 선우양일;임선희;배호정;김중현;김은아;김승일;김수현;박정은;김재우
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.96-102
    • /
    • 2002
  • The S-phase checkpoint mechanisms response to DNA damage or inhibition of DNA replication for maintenance of genetic stability in eukaryotic cells. These roles include cell cycle control arrest at S-phase and Iranscriptional induction of repair genes. To characterize the defects of dpbll mutant for both these responses, we examined the over-expression effect of DPBll gene, the sensitivity to HU, MMS, and the transcriptional pattern by DNA damage agent for RNRS mRNA. RNRS transcript is induced in response to a wide variety of agents that either damage D7A directly through chemical modification or induce stress by blocking DNA synthesis. As results, dpbll-1 cells are sensitive to DNA damage agents and the level of RNR3 mRNA is reduced approximately 40% than wild type cells. Moreover, we found the same results in dpb2-1 cells. Therefore, we propose that DPB2 and DPBll act as a sensor of replication that coordinates the transcriptional and cell cycle responses to replication blocks.

Cloning and Expression of β1-Adrenergic Receptor Genes in Adipose Tissues from Korean Native Cattle (Hanwoo)

  • Ha, S.H.;Chung, M.I.;Baik, M.G.;Choi, Y.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.1
    • /
    • pp.13-16
    • /
    • 2001
  • Bovine ${\beta}1$-adrenergic receptor (AR) cDNA was cloned using degenerative primers. Bovine ${\beta}1$-AR coded for 467 amino acids and the comparison of the deduced amino acid sequence with that of sheep showed 93.4% identity. Northern blot analysis indicated that transcript size for the bovine ${\beta}1$-AR was 3.6 kb in the adipose tissue. The expression level of three $\beta$-ARs (1, 2, and 3) in bovine abdominal, subcutaneous, and perirenal adipose tissues were examined using reverse transcription-polymerase chain reaction (RT-PCR), and the levels of ${\beta}1$- and ${\beta}3$-AR mRNA were found to be lower in the subcutaneous adipose tissue than in the abdominal and perirenal adipose tissues. These results suggest that the expression of $\beta$-ARs mRNA are differentially regulated among the adipose tissues.

Cloning and expression of lin-28 homolog B gene in the onset of puberty in Duolang sheep

  • Xing, Feng;Zhang, Chaoyang;Kong, Zhengquan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.23-30
    • /
    • 2019
  • Objective: Recent studies have demonstrated that lin-28 homolog B (LIN28B)/miRNA let-7 (let-7) plays a role in the regulation of pubertal onset in mammals. However, the role of LIN28B/let-7 in the onset of ovine puberty remains unknown. We cloned the Duolang sheep Lin28B cDNA sequence, detected the expression change of LIN28B, let-7a and let-7g in hypothalamus, pituitary and ovary tissues at three different pubertal stages. Methods: The reverse transcriptase polymerase chain reaction (RT-PCR) was used to clone the cDNA sequence of LIN28B gene from Duolang sheep and the bioinformatics methods were applied to analyze the amino acid sequence of LIN28B protein. The mRNA expression levels of the LIN28B gene at different pubertal stages were examined by real time RT-PCR. Results: LIN28B cDNA of Duolang sheep was cloned, and two transcripts were obtained. The amino acid sequence of transcript 1 shares 99.60%, 98.78%, and 94.80% identity with those of goat, wild yak and pig, respectively. Strong LIN28B mRNA expression was detected in the hypothalamus, pituitary, ovary, oviduct and uterus, while moderate expression was found in the liver, kidney, spleen and heart, weak expression was observed in the heart. No expression was found in the lungs. Quantitative real-time PCR (QPCR) and western-blot analysis revealed that the LIN28B was highly expressed in the hypothalamus and ovary at prepuberty stages, and this expression significantly decreased from the prepuberty to puberty stages (p<0.05). Markedly increased levels of mRNA expression were detected in the pituitary from prepuberty to puberty (p<0.05) and then significantly decreased from puberty to post-puberty (p<0.05). The expression levels of let-7a and let-7g showed no significant changes among different pubertal stages (p>0.05). Conclusion: These results provided a foundation for determining the functions of LIN28B/let-7 and their role in the onset of sheep puberty.

Molecular Characterization of Small Heat Shock Protein(hsp20.8A) from the Silkworm, Bombyx mori

  • Hwang, Jae-Sam;Go, Hyun-Jeong;Goo, Tae-Won;Seong, Su-Il;Yun, Eun-Young;Ahn, Mi-Young;Kim, Seong-Ryul;Park, Kwan-Ho;Kim, Ik-Soo;Jeon, Jae-Pil;Kang, Seok-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.1
    • /
    • pp.75-78
    • /
    • 2007
  • To define the molecular mechanism of initiation and termination of diapause during the embryogenesis of silkworm, Bombyx mori, mRNA transcripts from diapausing eggs and diapause activated eggs were compared with differential expression using cDNA array. Among those clones, mRNA transcript from hsp20.8A, which was expressed at a high level in diapausing eggs that had been incubated at $25^{\circ}C$ for 30 days after oviposition, whereas, in the eggs exposed to $15^{\circ}C$ for 30 days, $5^{\circ}C$ for 60 days, the expression of mRNA decreased. On the other hand, the expression of mRNA during embryogenesis observed abundantly at 4 to 6 days after heat-HCl treatment and later at 9 to 10 days after just before hatching. This result was suggested for us that hsp20.8A was expressed in response to embryogenesis as well as physical stress.

Effects of Kamichihyo-san on Anti-CD40 and Recombinant Interleukin-4 Induced Cytokine Production and Immunoglobulin E in Highly Purified Mouse B Cells (생쥐의 B 세포에서 anti-CD40과 rIL-4로 유도된 사이토카인 생산과 면역글로블린 E에 대한 가미치효산의 효과)

  • Ham Chul in;Park Yang chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.6
    • /
    • pp.1479-1486
    • /
    • 2003
  • In order to evaluate the antiallergic effects of Kamiohihyosan(KCHS), studies were done. We measured the cytotoxic activity for lung fibroblast cell, cytokines transcript expression, production of IL-4, IL-10, IFN-γ, proliferation of B cell in anti-CD40mAb plus rIL-4 stimulated murine splenic B cells. The results were obtained as follows: KCHS was not showed cytotoxicity in the fibroblast lung cell, KCHS increased the gene synthesis of INF-γ, TNF-α, IL1-β, IL-6, IL-10(m-RNA), KCHS decreased the gene synthesis of IL-4, IL-5, TGF-β(m-RNA), KCHS decreased the appearance of IL-4, IgE significantly, KCHS increased the appearance of IL-10, IFN-γ significantly, KCHS decreased the proliferation of B cell significantly, The facts above prove that KCHS is effective against the allergy. Thus, I think that we should study on this continuously.

Effects of Kamiyukgunja-tang on anti-CD40 and Recombinant Interleukin-4 induced Cytokine Production and Immunoglobulin E in Highly Purified Mouse B Cells (생쥐의 B 세포에서 면역글로블린 E의 분비와 사이토카인 생산에 대한 가미육군자탕의 효과)

  • Kim Woon Gil;Kim Dong Hee;Park Yang Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.1065-1074
    • /
    • 2003
  • In order to evaluate the antiallergic effects of Kamiyukgunja-tang (KYGJT), studies were done. We measured the cytotoxic activity for lung fibroblast cell, cytokines transcript expression, production of INF-γ, IL-10, IL-4, GM-CSF, IL-1 β, TNF-α. IL-5 proliferation of B cell in anti-CD40mAb plus r1L-4 stimulated murine splenic B cells. The results were obtained as follows : 1. KYGJT was not showed cytotoxicity in the fibroblast lung cell. 2. KYGJT increased the gene synthesis of INF-γ, IL-10, GM-CSF(m-RNA). 3. KYGJT decreased the gene synthesis of IL-1β, IL-4, TNF-α, IL-5(m-RNA). 4. KYGJT decreased the appearance of TNF-α significantly. 5. KYGJT decreased the appearance of IgE significantly. 6. KYGJT decreased the proliferation of B cell significantly. 7. KYGJT decreased the appearance of Histamin Release Production significantly. The facts above prove that KYGJT is effective against the allergy. Thus. I think that we should study on this continuously

Flooding Stress-Induced Glycine-Rich RNA-Binding Protein from Nicotiana tabacum

  • Lee, Mi-Ok;Kim, Keun Pill;Kim, Byung-gee;Hahn, Ji-Sook;Hong, Choo Bong
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2009
  • A cDNA clone for a transcript preferentially expressed during an early phase of flooding was isolated from Nicotiana tabacum. Nucleotide sequencing of the cDNA clone identified an open reading frame that has high homology to the previously reported glycine-rich RNA-binding proteins. The open reading frame consists of 157 amino acids with an N-terminal RNA-recognition motif and a C-terminal glycine-rich domain, and thus the cDNA clone was designated as Nicotiana tabaccum glycine-rich RNA-binding protein-1 (NtGRP1). Expression of NtGRP1 was upregulated under flooding stress and also increased, but at much lower levels, under conditions of cold, drought, heat, high salt content, and abscisic acid treatment. RNA homopolymer-binding assay showed that NtGRP1 binds to all the RNA homopolymers tested with a higher affinity to poly r(G) and poly r(A) than to poly r(U) and poly r(C). Nucleic acid-binding assays showed that NtGRP1 binds to ssDNA, dsDNA, and mRNA. NtGRP1 suppressed expression of the fire luciferase gene in vitro, and the suppression of luciferase gene expression could be rescued by addition of oligonucleotides. Collectively, the data suggest NtGRP1 as a negative modulator of gene expression by binding to DNA or RNA in bulk that could be advantageous for plants in a stress condition like flooding.

Application of a Reassortant Cucumber mosaic virus Vector for Gene Silencing in Tomato and Chili Pepper Plants

  • Hong, Jin-Sung;Rhee, Sun-Ju;Kim, Eun-Ji;Kim, Tae-Sung;Ryu, Ki-Hyun;Masuta, Chikara;Lee, Gung-Pyo
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.81-86
    • /
    • 2012
  • We developed a reassortant RNA virus vector derived from $Cucumber$ $mosaic$ $virus$ (CMV), which has advantages of very wide host range and can efficiently induce gene silencing in a few model plants. Certain CMV isolates, however, show limited host ranges presumably because they naturally co-evolved with their own hosts. We used a reassortant comprised of two strains of CMV, Y-CMV and Gn-CMV, to broaden the host range and to develop a virus vector for virus-induced gene silencing (VIGS). Gn-CMV could infect chili pepper and tomato more efficiently than Y-CMV. Gn-CMV RNA1, 3 and Y-CMV RNA2-A1 vector were newly reconstructed, and the transcript mixture of RNA1 and 3 genomes of Gn-CMV and RNA2 genome of Y-CMV RNA2 containing portions of the endogenous phytoene desaturase (PDS) gene (CMV2A1::PDSs) was inoculated onto chili pepper (cv. Chung-yang), tomato (cvs. Bloody butcher, Tigerella, Silvery fir tree, and Czech bush) and $Nicotiana$ $benthamiana$. All the tested plants infected by the reassortant CMV vector showed typical photo-bleaching phenotypes and reduced expression levels of $PDS$ mRNA. These results suggest that the reassortant CMV vector would be a useful tool for the rapid induction of the RNA silencing of endogenous genes in chili pepper and tomato plants.

Comprehensive analysis of miRNAs, lncRNAs and mRNAs profiles in backfat tissue between Daweizi and Yorkshire pigs

  • Chen Chen;Yitong Chang;Yuan Deng;Qingming Cui;Yingying Liu;Huali Li;Huibo Ren;Ji Zhu;Qi Liu;Yinglin Peng
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.404-416
    • /
    • 2023
  • Objective: Daweizi (DWZ) is a famous indigenous pig breed in China and characterized by tender meat and high fat percentage. However, the expression profiles and functions of transcripts in DWZ pigs is still in infancy. The object of this study was to depict the transcript profiles in DWZ pigs and screen the potential pathway influence adipogenesis and fat deposition, Methods: Histological analysis of backfat tissue was firstly performed between DWZ and lean-type Yorkshire pigs, and then RNA sequencing technology was utilized to explore miRNAs, lncRNAs and mRNAs profiles in backfat tissue. 18 differentially expressed (DE) transcripts were randomly selected for quantitative real-time polymerase chain reaction (QPCR) to validate the reliability of the sequencing results. Finally, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis were conducted to investigate the potential pathways influence adipocyte differentiation, adipogenesis and lipid metabolism, and a schematic model was further proposed. Results: A total of 1,625 differentially expressed transcripts were identified in DWZ pigs, including 27 upregulated and 45 downregulated miRNAs, 64 upregulated and 119 down-regulated lncRNA, 814 upregulated and 556 downregulated mRNAs. QPCR analysis exhibited strong consistency with the sequencing data. GO and KEGG analysis elucidated that the differentially expressed transcripts were mainly associated with cell growth and death, signal transduction, peroxisome proliferator-activated receptors (PPAR), AMP-activated protein kinase (AMPK), PI3K-Akt, adipocytokine and foxo signaling pathways, all of which are strongly involved in cell development, lipid metabolism and adipogenesis. Further analysis indicated that the BGIR9823_87926/miR-194a-5p/AQP7 network may be effective in the process of adipocyte differentiation or adipogenesis. Conclusion: Our study provides comprehensive insights into the regulatory network of backfat deposition and lipid metabolism in pigs from the point of view of miRNAs, lncRNAs and mRNAs.