• 제목/요약/키워드: mRNA transcript

검색결과 197건 처리시간 0.029초

감귤에서 분리한 Metallothionein 유전자의 발현분석 및 게놈 DNA (Expression Patterns and Isolation of Genomic DNA of a Metallothionein-like Gene from Citrus (Citrus unshiu Marc. cv. Miyagawa))

  • 김인중
    • 식물조직배양학회지
    • /
    • 제28권5호
    • /
    • pp.231-237
    • /
    • 2001
  • Differential screening을 통해 Moriguchi등 (1998)이 분리한 유전자와 상동성을 나타내는 CitMT45 유전자의 cDNA를 분리하였다. 본 실험에서 분리한 cDNA는 Moriguchi등 (1998)이 분리한 cDNA에 비해 긴 3' UTR을 가지고 있었다. 잎과 과피, 과육에서 CitMT45 유전자의 발현분석을 northern blot을 통해 수행한 결과, 발달단계에 따라 증가하는 비슷한 앙상을 관찰할 수 있었으나, 과육, 과피, 잎의 순으로 그 발현 양이 많았다. 이들의 발현조절에 대한 정보를 얻기 위해 게놈 DNA를 분리한 결과, CitMT45 게놈 구조는 3개의 exon과 2개의 intron으로 구성되어 있었고, primer extension 분석을 통해 CitMT45 유전자의 발현은 3개의 부위에서 개시되고 있음을 알 수 있었다. 전사개시부위의 5'upstream 지역에서 TATA box와 CCAAT box뿐만 아니라, 금속이온과 온도변화에 의한 조절에 중요한 부위로 알려진 cis-element를 발견하였다.

  • PDF

Construction of a High-Quality Yeast Two-Hybrid Library and Its Application in Identification of Interacting Proteins with Brn1 in Curvularia lunata

  • Gao, Jin-Xin;Jing, Jing;Yu, Chuan-Jin;Chen, Jie
    • The Plant Pathology Journal
    • /
    • 제31권2호
    • /
    • pp.108-114
    • /
    • 2015
  • Curvularia lunata is an important maize foliar fungal pathogen that distributes widely in maize growing area in China, and several key pathogenic factors have been isolated. An yeast two-hybrid (Y2H) library is a very useful platform to further unravel novel pathogenic factors in C. lunata. To construct a high-quality full length-expression cDNA library from the C. lunata for application to pathogenesis-related protein-protein interaction screening, total RNA was extracted. The SMART (Switching Mechanism At 5' end of the RNA Transcript) technique was used for cDNA synthesis. Double-stranded cDNA was ligated into the pGADT7-Rec vector with Herring Testes Carrier DNA using homologous recombination method. The ligation mixture was transformed into competent yeast AH109 cells to construct the primary cDNA library. Eventually, a high qualitative library was successfully established according to an evaluation on quality. The transformation efficiency was about $6.39{\times}10^5$ transformants/$3{\mu}g$ pGADT7-Rec. The titer of the primary cDNA library was $2.5{\times}10^8cfu/mL$. The numbers for the cDNA library was $2.46{\times}10^5$. Randomly picked clones show that the recombination rate was 88.24%. Gel electrophoresis results indicated that the fragments ranged from 0.4 kb to 3.0 kb. Melanin synthesis protein Brn1 (1,3,8-hydroxynaphthalene reductase) was used as a "bait" to test the sufficiency of the Y2H library. As a result, a cDNA clone encoding VelB protein that was known to be involved in the regulation of diverse cellular processes, including control of secondary metabolism containing melanin and toxin production in many filamentous fungi was identified. Further study on the exact role of the VelB gene is underway.

Identification of duck liver-expressed antimicrobial peptide 2 and characterization of its bactericidal activity

  • Hong, Yeojin;Truong, Anh Duc;Lee, Janggeun;Lee, Kyungbaek;Kim, Geun-Bae;Heo, Kang-Nyeong;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권7호
    • /
    • pp.1052-1061
    • /
    • 2019
  • Objective: This study was conducted to identify duck liver-expressed antimicrobial peptide 2 (LEAP-2) and demonstrate its antimicrobial activity against various pathogens. Methods: Tissue samples were collected from 6 to 8-week-old Pekin ducks (Anas platyrhynchos domesticus), total RNA was extracted, and cDNA was synthesized. To confirm the duck LEAP-2 transcript expression levels, quantitative real-time polymerase chain reaction was conducted. Two kinds of peptides (a linear peptide and a disulfide-type peptide) were synthesized to compare the antimicrobial activity. Then, antimicrobial activity assay and fluorescence microscopic analysis were conducted to demonstrate duck LEAP-2 bactericidal activity. Results: The duck LEAP-2 peptide sequence showed high identity with those of other avian species (>85%), as well as more than 55% of identity with mammalian sequences. LEAP-2 mRNA was highly expressed in the liver with duodenum next, and then followed by lung, spleen, bursa and jejunum and was the lowest in the muscle. Both of LEAP-2 peptides efficiently killed bacteria, although the disulfide-type LEAP-2 showed more powerful bactericidal activity. Also, gram-positive bacteria was more susceptible to duck LEAP-2 than gram-negative bacteria. Using microscopy, we confirmed that LEAP-2 peptides could kill bacteria by disrupting the bacterial cell envelope. Conclusion: Duck LEAP-2 showed its antimicrobial activity against both gram-positive and gram-negative bacteria. Disulfide bonds were important for the powerful killing effect by disrupting the bacterial cell envelope. Therefore, duck LEAP-2 can be used for effective antibiotics alternatives.

RNA-seq Gene Profiling Reveals Transcriptional Changes in the Late Phase during Compatible Interaction between a Korean Soybean Cultivar (Glycine max cv. Kwangan) and Pseudomonas syringae pv. syringae B728a

  • Myoungsub, Kim;Dohui, Lee;Hyun Suk, Cho;Young-Soo, Chung;Hee Jin, Park;Ho Won, Jung
    • The Plant Pathology Journal
    • /
    • 제38권6호
    • /
    • pp.603-615
    • /
    • 2022
  • Soybean (Glycine max (L) Merr.) provides plant-derived proteins, soy vegetable oils, and various beneficial metabolites to humans and livestock. The importance of soybean is highly underlined, especially when carbon-negative sustainable agriculture is noticeable. However, many diseases by pests and pathogens threaten sustainable soybean production. Therefore, understanding molecular interaction between diverse cultivated varieties and pathogens is essential to developing disease-resistant soybean plants. Here, we established a pathosystem of the Korean domestic cultivar Kwangan against Pseudomonas syringae pv. syringae B728a. This bacterial strain caused apparent disease symptoms and grew well in trifoliate leaves of soybean plants. To examine the disease susceptibility of the cultivar, we analyzed transcriptional changes in soybean leaves on day 5 after P. syringae pv. syringae B728a infection. About 8,900 and 7,780 differentially expressed genes (DEGs) were identified in this study, and significant proportions of DEGs were engaged in various primary and secondary metabolisms. On the other hand, soybean orthologs to well-known plant immune-related genes, especially in plant hormone signal transduction, mitogen-activated protein kinase signaling, and plant-pathogen interaction, were mainly reduced in transcript levels at 5 days post inoculation. These findings present the feature of the compatible interaction between cultivar Kwangan and P. syringae pv. syringae B728a, as a hemibiotroph, at the late infection phase. Collectively, we propose that P. syringae pv. syringae B728a successfully inhibits plant immune response in susceptible plants and deregulates host metabolic processes for their colonization and proliferation, whereas host plants employ diverse metabolites to protect themselves against infection with the hemibiotrophic pathogen at the late infection phase.

신선초 추출물이 인체 유방암 세포 MDA-MB-231의 세포 사멸에 미치는 영향 (Effect of Angelica keiskei Extract on Apoptosis of MDA-MB-231 Human Breast Cancer Cells)

  • 정유진;강금지
    • 한국식품영양과학회지
    • /
    • 제40권12호
    • /
    • pp.1654-1661
    • /
    • 2011
  • AKE의 농도별 처리가 인체 유방암 세포 MDA-MB-231의 세포사멸에 미치는 영향을 확인하기 위하여 세포 화학적인 방법인 MTT 분석, 이중 핵 염색법(Hoechst 33342/EtBr staining), FACS를 통하여 세포사멸을 관찰하였다. MTT 분석 결과, 150 ${\mu}g$/mL 처리 군에서 대조군에 대비하여 약 50%의 세포사멸을 나타내었으며 세포사멸이 농도 의존적으로 증가되었고(p<0.05), 이중 핵 염색법을 이용하여 세포사의 구분 결과 능동적 세포예정사인 apoptosis가 농도 의존적으로 급격히 증가하였으며(p<0.05), 특히 150 ${\mu}g$/mL 처리군에서 현저한 증가율을 나타내었다. 보다 더 명확한 세포사멸을 확인하기 위하여 FACS를 이용한 apoptosis 측정 결과, 처리군 간 크게 차이를 보이며 농도 의존적으로 증가되었다. 세포사멸관련 mRNA 유전자 발현을 관찰한 결과, 세포사멸 억제 유전자 Bcl-2는 처리농도가 증가할수록 유의적 증가를 보였으며(p<0.05), 세포사멸 유도 유전자 Bax는 유의적 감소를 나타내었다(p<0.05). 세포사멸의 지표인 Bcl-2/Bax의 비율은 농도 의존적인 감소를 나타내었으며(p<0.05), 세포사멸유도의 마지막 단계의 실행자인 caspase-3의 활성도 첨가 농도 의존적으로 증가하여 세포사멸을 유도하는 것으로 확인되었다(p<0.05). 결론적으로, AKE는 유방암 세포 MDA-MB-231의 세포사멸을 유도하는 것으로 나타나 신선초의 항암효과의 가능성을 제시해주었다. 향후 in vivo 실험에서도 신선초의 항암효과에 대한 심층적 연구가 이뤄져야 할 것으로 사료된다.

Inhibition by Imatinib of Expression of O-glycan-related Glycosyltransferases and Tumor-associated Carbohydrate Antigens in the K562 Human Leukemia Cell Line

  • Sun, Qi-Chang;Liu, Mi-Bo;Shen, Hong-Jie;Jiang, Zhi;Xu, Lan;Gao, Li-Ping;Ni, Jian-Long;Wu, Shi-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2447-2451
    • /
    • 2013
  • Objective: To study changes of tumor associated carbohydrate antigen (TACAs) expression and mRNA levels for tumor associated glycosyltransferases, and assess subcellular localizations of N-acetyl galactosyltransferases (GalNAc-Ts) in the K562 leukemia cell line after imatinib treatment. Methods: RT-PCR was performed to analyze the expression of glycosyltransferases which synthesize O-glycan in tumor-associated carbohydrate antigens (TCTAs). The expression of Tn antigen, T antigen and sialyl T antigen on K562 cell membranes was measured by flow cytometry after treatment with different concentrations of imatinib. Co-localization of GalNAc-Ts and ER (endoplasmic reticulum) was determined by confocal laser scanning microcopy. Results: Transcript expression levels of several glycosyltransferases related to TCTAs were decreased after imatinib ($0-0.3{\mu}M$) treatment. Expression of Tn antigen and T antigen was increased while that of sialyl T antigen was decreased. Co-localization of GalNAc-Ts and ER was reduced by $0.2{\mu}M$ of imatinib. Conclusion: Imatinib inhibited the expression of O-glycan related TACAs and several related glycosyltransferases, while decreasing the co-localization of GalNAc-Ts and ER and normalizing O-glycosylation in the K562 human leukemia cell.

Expression of Egr3 in mouse gonads and its localization and function in oocytes

  • Shin, Hyejin;Seol, Dong-Won;Nam, Minyeong;Song, Haengseok;Lee, Dong Ryul;Lim, Hyunjung Jade
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권6호
    • /
    • pp.781-787
    • /
    • 2017
  • Objective: The early growth response (Egr) family consists of four members (Egr1, Egr2, Egr3, and Egr4) that are zinc finger transcription factors. Among them, Egr3 is involved in transcriptional regulation of target genes during muscle spindle formation and neurite outgrowth. We previously showed that the immunoreactive Egr3 is localized on oocyte spindle and accumulate near the microtubule organizing center during meiosis I in mice. Egr3 was also shown to be localized on spermatocytes. We herein investigated if Egr3 is expressed in mouse gonads and if Egr3 blockade results in any defect in oocyte maturation. Methods: Expression of Egr3 in mouse gonads was examined by reverse transcription-polymerase chain reaction. Full-length Egr3 and truncated Egr3 (${\Delta}Egr3$) complementary RNAs (cRNAs) with Xpress tag at N-terminus and DsRed2 at C-terminus, and small interfering RNA (siRNA) targeting Egr3 were microinjected into mouse oocytes at germinal vesicle stage. Localization of microinjected Egr3 was examined by confocal live imaging and immunofluorescence staining. Results: Egr3 mRNA was detected in mouse ovaries and testes from 1 to 4 week-old mice. An uncharacterized longer transcript containing 5'untranslated region was also detected in 3 and 4 week-old gonads. Microinjected Xpress-Egr3-DsRed2 or Xpress-${\Delta}Egr3$-DsRed2 localized to nuclei and chromosomes during meiotic progression. Microinjection of these cRNAs or Egr3 siRNA in oocytes did not affect meiotic maturation. Immunofluorescence staining of Egr3 in Xpress-${\Delta}Egr3$-DsRed2-injected oocytes showed a positive signal only on meiotic spindle, suggesting that this antibody does not detect endogenous or exogenous Egr3 in mouse oocytes. Conclusion: The results show that Egr3 localizes to chromosomes during meiotic progression and that certain antibodies may not faithfully represent localization of target proteins in oocytes. Egr3 seems to be dispensable during oocyte maturation in mice.

묵납자루 (Acheilognathus signifer; Cyprinidae) metallothionein 유전자의 클로닝 및 특징 분석 (Molecular Characterization of Metallothionein Gene of the Korean Bitterling Acheilognathus signifer (Cyprinidae))

  • 이상윤;방인철;남윤권
    • 한국어류학회지
    • /
    • 제23권1호
    • /
    • pp.10-20
    • /
    • 2011
  • 한반도 고유종인 묵납자루(Acheilognathus signifer)로부터 metallothionein(MT) 유전자를 분리하고 그 유전자 구조와 발현 특징을 분석하였다. 묵납자루 MT cDNA는 20개의 시스테인(cysteines)을 포함한 60개의 아미노산을 암호화하고 있었고, 이들 시스테인 잔기들의 위치는 잉어목 어류에서 잘 보전되어 있었다. 묵납자루 MT 유전자는 3개의 exon과 2개의 intron으로 구성되어 있었으며 intron영역은 A/T조성 빈도가 높았다. 생물정보 분석법을 통해 묵납자루 MT 유전자의 프로모터 영역은 중금속 조절 빛 스트레스/면역관련 조절에 관련한 다양한 전사 조절인자들의 부착 위치들이 보유하고 있는 것으로 예측되었다. Real-time RT-PCR 분석법을 이용한 묵납자루 MT mRNA의 조직 별 발현 수준을 조사한 결과, 난소와 장 조직에서의 발현 수준이 가장 높았으며 성장과 근욕 조직에서의 발현 수준이 가장 낮은 것으로 확인되었다. 구리를 이용한 중금속 노출 실험(구리 농도 $0.5\;{\mu}M$을 이용, 48 시간 동안 침지 처리)을 통하여 간 조직에서 MT mRNA 발현이 가장 많이 유도되었고(3.5배 이상), 비장, 신장 및 아가미에서도 유의적인 발현양의 증가(1.5~2.5배)가 관찰되었다. 그러나 뇌 및 장 조직에서는 MT 발현양의 변화가 없었다. 본 연구 결과는 향후 멸종위기 고유종인 묵납자루의 중금속 관련 스트레스 연구에 유용한 기초 자료를 제공할 수 있으리라 기대된다.

Involvement of Endoplasmic Reticulum Stress Response in the Neuronal Differentiation

  • Cho, Yoon-Mi;Jang, Yoon-Seong;Jang, Young-Min;Seo, Jin-Young;Kim, Ho-Shik;Lee, Jeong-Hwa;Jeong, Seong-Whan;Kim, In-Kyung;Kwon, Oh-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권6호
    • /
    • pp.239-246
    • /
    • 2007
  • Expressions of endoplasmic reticulum stress response (ERSR) genes were examined during the neuronal differentiation of rat fetal cortical precursor cells (rCPC) and rat pheochromocytoma PC12 cells. When rCPC were differentiated into neuronal cells for 7 days, early stem cell marker, nest in, expression was decreased from day 4, and neuronal markers such as neurofilament-L, -M and Tuj1 were increased after day 4. In this condition, expressions of BIP, ATF6, and phosphorylated PERK as well as their down stream signaling molecules such as CHOP, ATF4, XBP1, GADD34, Nrf2 and $p58^{IPK}$ were significantly increased, suggesting the induction of ERSR during neuronal differentiation of rCPC. ERSR was also induced during the differentiation of PC12 cells for 9 days with NGF. Neurofilament-L transcript was time-dependently increased. Both mRNA and protein levels of Tuj1 were increased after the induction, and the significant increase in NeuN was observed at day 9. Similar to the expression patterns of neuronal markers, BIP/GRP78 and CHOP mRNAs were highly increased at day 9, and ATF4 mRNA was also increased from day 7. These results strongly suggest the induction and possible role of ERSR in neuronal differentiation process. Further study to identify targets responsible for neuronal induction will be necessary.

Stage and Tissue Specific Expression of Four TCR Subunits in Olive Flounder (Paralichthys olivaceus)

  • Lee, Young Mee;Lee, Jeong-Ho;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Hwang, In Joon;Kim, Sung Yeon
    • 한국발생생물학회지:발생과생식
    • /
    • 제17권4호
    • /
    • pp.329-335
    • /
    • 2013
  • TCR subunits are members of membrane-bound receptors which allow the fast and efficient elimination of the specific fish pathogens have regulated function in adaptive immunity. Sequence structure of TCR subunits have been reported for various teleosts, but the information of each TCR subunit functional characterization through expression analysis in fish was unknown. In this study, we examined the gene expression of TCR subunits in the early developmental stages and observed transcript levels in various tissues from healthy adult olive flounder by RT-PCR. The mRNA expression of alpha subunit was already detected in the previous hatching step. But the transcripts of another TCR subunit were not observed during embryo development and increased after hatching and maintained until metamorphosis at the same level. It was found that all TCR subunits mRNAs are commonly expressed in the immune-related organ such as spleen, kidney and gill, also weak expressed in fin and eye. TCR alpha and beta subunit were expressed in brain, whereas gamma and delta were not expressed same tissue. The sequence alignment analysis shows that there are more than 80% sequence homology between TCR subunits. Because it has a high similarity of amino acid sequence to expect similar in function, but expression analysis show that will have may functional diversity due to different time and place of expression.